Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статич методы обработки.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.93 Mб
Скачать

Теорема умножения вероятностей

Вероятность произведения двух событий равна вер-ти одного из них, умноженной на условную вероятность другого при наличии первого:

Р (АВ) = Р(А) · Р(В/А), или Р (АВ) = Р(В) · Р(А/В).

Следствие. Вероятность совместного наступления двух независимых  событий А и В равна произведению вероятностей этих событий:

Р (АВ) = Р(А) · Р(В).

Следствие. При производимых n одинаковых независимых испытаниях, в каждом из которых события А появляется с вероятностью р, вероятность появления события А хотя бы один раз равна 1 - (1 - р)n

9 Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.

Формулировка

Пусть дано вероятностное пространство , и полная группа попарно несовместных событий , таких что       . Пусть — интересующее нас событие. Тогда

.

Замечание

Формула полной вероятности также имеет следующую интерпретацию. Пусть случайная величина, имеющая распределение

.

Тогда

,

т.е. априорная вероятность события равна среднему его апостериорной вероятности.

10   Теорема Байеса (или формула Байеса) — одна из основных теорем теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие (гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны. Названа в честь её автора, преп. Томаса Байеса (посвящённая ей работа «An Essay towards solving a Problem in the Doctrine of Chances» впервые опубликована в 1763 году,[1] через 2 года после смерти автора). Полученную по формуле вероятность можно далее уточнять, принимая во внимание данные новых наблюдений.

Психологические эксперименты[2] показали, что люди при оценках вероятности игнорируют различие априорных вероятностей (ошибка обоснования оценки (англ.)русск.), и потому результаты по формуле Байеса и правильные результаты могут сильно отличаться от ожидаемых.

Формулировка

Формула Байеса:

,

где

— априорная вероятность гипотезы A (смысл такой терминологии см. ниже);

— вероятность гипотезы A при наступлении события B (апостериорная вероятность);

— вероятность наступления события B при истинности гипотезы A;

— полная вероятность наступления события B.

Вывод формулы  [показать]

«Физический смысл» и терминология

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

События, отражающие действие «причин», в данном случае обычно называют гипотезами, так как они — предполагаемые события, повлекшие данное. Безусловную вероятность справедливости гипотезы называют априорной (насколько вероятна причина вообще), а условную — с учетом факта произошедшего события — апостериорной (насколько вероятна причина оказалась с учетом данных о событии).

Следствие

Формула Байеса является важным следствием из формулы полной вероятности события, зависящего от нескольких несовместных гипотез (и только от них!).

 — вероятность наступления события B, зависящего от ряда гипотез , если известны степени достоверности этих гипотез (например, измерены экспериментально);

Вывод формулы  [показать]

Пример

Событие B — в баке нет бензина, событие A — машина не заводится. Заметим, что вероятность Р(А|В) того, что машина не заведется, если в баке нет бензина, равняется единице. Тем самым, вероятность Р(В) того, что в баке нет бензина, равна произведению вероятности Р(А) того, что машина не заводится, на вероятность P(B|A) того, что причиной события А стало именно отсутствие бензина (событие В), а не, к примеру, разряженный аккумулятор.