
- •1Классическое и статистическое определения вероятности события
- •Случайное событие
- •Определение
- •2Комбинаторика
- •Примеры комбинаторных конфигураций и задач
- •Разделы комбинаторики Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Инфинитарная комбинаторика
- •3 Подсчет числа размещений, перестановок, сочетаний без повторов и с повторами
- •Достоверное и невозможное события
- •2.Основные формулы комбинаторики. Вероятность событий. Свойства Вероятностей. Геометрические вероятности.
- •4. Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.
- •5. Формула полной вероятности. Вероятность гипотез. Формула Бейеса.
- •7. Дискретные случайные величины и их характеристика. Закон распределения вероятностей дсв. Математическое ожидание дсв. Свойства математического ожидания.
- •6 Теорема сложения вероятностей
- •7Теорема умножения вероятностей
- •Теорема умножения вероятностей
- •Формулировка
- •Замечание
- •Формулировка
- •«Физический смысл» и терминология
- •Следствие
- •Пример расчёта
- •Формулировка
- •Доказательство
- •12 Предельные теоремы для схемы Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •13 Локальная теорема Муавра — Лапласа
- •Применение
- •Формулировка
- •Доказательство
- •14 Дискретные случайные величины
- •Примеры дискретных случайных величин:
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •15Функция распределения
- •Определение
- •Свойства
- •16 Математическое ожидание
- •Математическое ожидание абсолютно непрерывного распределения
- •Математическое ожидание случайного вектора
- •Математическое ожидание преобразования случайной величины
- •Простейшие свойства математического ожидания
- •Дополнительные свойства математического ожидания
- •Примеры
- •Неравенство Чебышева в теории меры
- •Формулировки
- •Неравенство Чебышева в теории вероятностей
- •Формулировки
- •Определение
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •Распределение Фишера—Снедекора
- •Теория вероятностей
- •Регрессионный анализ
- •23 Основные задачи математической статистики
- •1. Задача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным
- •2. Задача проверки правдоподобия гипотез
- •3. Задача нахождения неизвестных параметров распределения
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •Свойства мнк-оценок
- •Обобщенный мнк
- •Взвешенный мнк
- •Некоторые частные случаи применения мнк на практике Аппроксимация линейной зависимости
- •27 Проверка статистических гипотез
- •Статистические гипотезы Определения
- •Этапы проверки статистических гипотез
- •Виды критической области
1Классическое и статистическое определения вероятности события
Каждый из равновозможных
результатов испытаний (опытов) называется
элементарным исходом. Их обычно обозначают
буквами
.
Например, бросается игральная кость.
Элементарных исходов всего может быть
шесть по числу очков на гранях.
Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.
Количественной мерой возможности появления рассматриваемого события является вероятность.
Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.
Классическое определение вероятности связано с понятием благоприятствующего исхода.
Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.
В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.
Классическое определение.
Вероятность события
равняется
отношению числа благоприятствующих
исходов к общему числу возможных исходов
(1.1)
где
—
вероятность события
,
—
число благоприятствующих событию
исходов,
—
общее число возможных исходов.
В рассмотренном примере
Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.
Относительная частота появления события вычисляется по формуле
(1.2)
где
-
число появления события
в
серии из
опытов
(испытаний).
Статистическое определение.
Вероятностью события
называется
число, относительно которого стабилизируется
(устанавливается) относительная частота
при
неограниченном увеличении числа опытов.
В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.
Из данных определений вероятности события видно, что всегда выполняется неравенство
Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.
Пример. Известно, что в поступившей партии из 30 швейных машинок 10 имеют внутренний дефект. Определить вероятность того, что из партии в 5 наудачу взятых машинок 3 окажутся бездефектными.
Решение. Для решения
данной задачи введем обозначения. Пусть
—
общее число машинок,
—
число бездефектных машинок,
—
число отобранных в партию машинок,
—
число бездефектных машинок в отобранной
партии.
Общее число комбинаций по
машинок,
т.е. общее число возможных исходов будет
равно числу сочетаний из
элементов
по
,
т.е.
.
Но в каждой отобранной комбинации должно
содержаться по три бездефектные машинки.
Число таких комбинаций равно числу
сочетаний из
элементов
по
,
т.е.
.
С каждой такой комбинацией в
отобранной партии оставшиеся дефектные
элементы тоже образуют множество
комбинаций, число которых равно числу
сочетаний из
элементов
по
,
т.е.
.
Это значит, что общее число благоприятствующих исходов определяется произведением . Откуда получаем
Подставим в эту формулу численные значения данного примера