- •Электромагнитная природа света, уравнения Максвелла.
- •П лотность потока энергии. Вектор Умова-Пойтинга. Интенсивность света. Световой вектор.
- •4, 11. Эллиптическая, круговая и линейная поляризация гармонических волн. Степень поляризации.
- •5. Поляризация при отражении и преломлении. Формула Френеля.
- •6. Закон Брюстера.
- •7. Распространение света в анизотропных средах. Поляризация при двойном лучепреломлении. Призма Николя. Призма Волластона.
- •8. Эллипсоид лучевых скоростей. Двуосные и одноосные кристаллы.
- •9. Закон Малюса
- •13. Искусственная анизотропия
- •1 4. Основные понятия фотометрии
- •17. Временная и пространственная когерентность света. Измерение когерентности.
- •1 8. Двухлучевая интерференция. Опыт Юнга. Ширина интерференционной полосы.
- •19. Классические интерференционные схемы. Бипризма Френеля. Зеркала Френеля.
- •20. Интерференция в тонких пленках. Полосы равной толщины. Полосы равного наклона. Кольца Ньютона.
- •21. Интерферометры: Майкельсона, Линника, Рождественского.
- •22. Многолучевая интерференция, интерферометр Фабри-Перо.
- •2 3. Дифракция света. Принцип Гюйгенса-Френеля.
- •24. Зоны Френеля. Построение дифракционных картин графическим способом.
- •26. Зонная пластинка
- •2 8. Прямоугольная амплитудная дифракционная решетка
- •34. Центрированная оптическая система. Преломление на сферической поверхности.
- •35. Поперечное и угловое увеличение, кардинальные точки и плоскости. Линейное (поперечное) увеличение
- •Угловое увеличение
- •Продольное увеличение
- •Кардинальные точки и отрезки
- •37. Распространение света в изотропных диэлектриках, фазовая и групповая скорости.
- •3 8. Дисперсия света. Ход лучей в призме.
- •39. Электронная теория дисперсии. Нормальная дисперсия.
- •42. Тепловое излучение. Закон Кирхгофа. Формула Релея-Джинса.
- •43. Формула Планка, закон Стефана-Больцмана, законы Вина.
42. Тепловое излучение. Закон Кирхгофа. Формула Релея-Джинса.
Испускаемый
источником свет уносит с собой энергию.
Существует много различных механизмов
подвода энергии к источнику света. В
тех случаях, когда необходимая энергия
сообщается нагреванием, т. е. подводом
тепла, излучение называется тепловым или температурным.
Излучение, находящееся в термодинамическом
равновесии с телами, имеющими определенную
температуру, называется равновесным или черным
излучением.
Пусть одно из тел в полости обладает
свойством поглощать всю падающую на
его поверхность лучистую энергию любого
спектрального состава. Такое тело
называют абсолютно
черным.
Распределение энергии по длинам волн
в излучении абсолютно черного тела при
заданной температуре T
характеризуется излучательной
способностью r (λ, T),
равной мощности излучения с единицы
поверхности тела в единичном интервале
длин волн. Полный
поток R (T) излучения
всех длин волн, равный называют интегральной
светимостью тела.
r (λ, T) = 8πkTλ–4.
Это
соотношение называют формулой
Релея–Джинса
о равномерном
распределении энергии по степеням
свободы в состоянии термодинамического
равновесия.
Закон
Кирхгофа
это
спектральная плотность излучения
конкретного материала стенок,
это
функция, характеризующая, опять же,
материал стенок. Для разных тел эти
функции различны, но их отношение,
оказывается, не зависит от тела и
представляется некоторой универсальной
функцией. Это означает, что, чем тело
больше поглощает при температуре T на
длине волны λ,
тем оно больше излучает при данных
температуре и длине волны.
43. Формула Планка, закон Стефана-Больцмана, законы Вина.
Планк пришел к выводу, что процессы излучения и поглощения электромагнитной энергии нагретым телом происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света: E = hν,
|
где h – так называемая постоянная Планка h = 6,626·10–34 Дж·с.
В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость R (T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T: R (T) = σT4.
|
Несколько позднее, в 1884 году, Л. Больцман вывел эту зависимость теоретически, исходя из термодинамических соображений. Этот закон получил название закона Стефана–Больцмана. Числовое значение постоянной σ, по современным измерениям, составляет
σ = 5,671·10–8 Вт / (м2 · К4). |
λmT = b или λm = b / T. Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина: длина волны λm, на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T. Значение постоянной Вина b = 2,898·10–3 м·К.
44. Основные представления квантовой теории излучения света. В 1900 г. Планк выдвинул гипотезу о квантованности излучаемой энергии. Порция излучаемой энергии равна = h· , (1)где h -постоянная Планка, - частота электромагнитного излучения. Идея квантования является одной из величайших физических идей. Оказалось, что многие величины считавшиеся непрерывными, имеют дискретный ряд значений. На базе этой идеи возникла квантовая механика, описывающая законы поведения микрочастиц. Гипотеза Планка получила дальнейшее развитие в работах Эйнштейна. Электромагнитная волна не только излучается, но и поглощается и распространяется в виде потока квантов. Итак, электромагнитное излучение ( в том числе и свет) представляет собой поток фотонов. Фотон - мельчайшая частица электромагнитного излучения, имеющая энергию в один квант. Световые частицы (фотоны) одновременно обладают и волновыми и корпускулярными свойствами. Фотоны, как любые частицы, имеют массу. Из закона взаимосвязи массы и энергии следует, что энергию фотона можно выразить как m·c2 (2) Из формул 1 и 2 получим, что масса фотона равна m = h·c2 (3). Масса определяемая соотношением 3, является массой движущегося фотона. Фотон не имеет массы покоя ( m0 = 0), так как он не может существовать в состоянии покоя. Все фотоны движутся со скоростью с = 3·108 м/с. Очевидно импульс фотона P = m·c, откуда следует, что P = h·c = h/(4). Наличие импульса у фотона экспериментально подтверждается открытием давления света. Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект. Законы фотоэффекта: Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл. Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности. 3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν < ν0, то фотоэффект уже не происходит.
Э
ту
формулу принято называть уравнением
Эйнштейна для фотоэффекта.
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения. Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода./ Законы внешнего фотоэффекта
Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):
и
Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота ν0 света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен. Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта. Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.
Вентильный фотоэффект Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).
