Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekonometrika_teoria.docx
Скачиваний:
0
Добавлен:
23.12.2019
Размер:
202.84 Кб
Скачать

15. Отражение в модели влияния на эндогенные переменные неучтённых факторов. Приведённая форма эконометрической модели

16. Линейная модель множественной регрессии. Порядок её оценивания методом наименьших квадратов в Excel. Смысл выходной статистической информации функции линейн.

Система состоит из равенств:1)y=a0+a1*x1+a2*x2+u; 2)E(u/x1,xt)=0; 3)E(u2/x1,x2)=r2u.x1,x2- экзоген перем, y-эндоген перемен.случ возмещен предполаг гомоскедастичн.спецификация содержит 4 параметра. это модель линейная эконометрич в виде изолир уравнений с несколькими объясняющ перемен или модель лин множ регрессии.эконом смысл коэф-ов а1 и а2-ожидаемые предельн знач перемен у по перемен х.это базовая модель,т.к.1)к такой модели мб приближенна практич любая эконометрич модель в виде изолир уравнения;2)поведен ур-ия в линейн моделях имеют такой же вид. эконометрич инвестиц модель Самуэльсона-Хикса явл частн случаем модели

17. Теорема Гаусса-Маркова, основные допущения и предпосылки, их практическое содержание и назначение.

Пусть матрица X уравнений наблюдений имеет размер , где , и обладает линейно-независимыми столбцами, а случайные возмущения удовлетворяют четырем условиям:

Тогда:

А) Наилучшая линейная процедура имеет вид:

Б) Эффективная линейная несмещенная оценка обладает свойством наименьших квадратов:

В) Ковариационная матрица оценки вычисляется по правилу

Г) Несмещенная оценка параметра модели находится по формуле

где n – число уравнений наблюдений, k+1 – количество неизвестных коэффициентов функции регрессии модели.

18. Случайная переменная (дискретная и непрерывная) и закон её распределения.

19. Процедура интервального прогнозирования по оценённой линейной модели значений эндогенной переменной

20. Модели нестационарных временных рядов с трендом и сезонной составляющей и их идентификация

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов. Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Каждый уровень временного ряда формируется из трендовой (T), циклической (S) и случайной (Е) компонент.

Модели, в которых временной ряд представлен как сумма перечисленных компонент, - аддитивные модели Y = Т + S + Е, как произведение - мультипликативные модели временного ряда: Y=T* S • Е, где Т- тренд, S- сезонная составляющая, Е – случайная составляющая

Модели временных рядов

тренда: y(t) = T(t) +ξt

где t – время; T(t) - временной тренд заданного параметрического вида (например, линейный T(t) = a + bt); ξt - случайная (стохастическая) компонента;

сезонности: y(t) = S(t) + ξt

где S(t) - периодическая (сезонная) компонента, ξt - случайная (стохастическая) компонента.

• тренда и сезонности: y(t) = T(t) + S(t) + ξt (аддитивная) или y(t) = T(t)S{t) + ξt (мультипликативная), где T(t) - временной тренд заданного параметрического вида; S(t) - периодическая (сезонная) компонента; ξt - случайная (стохастическая) компонента.

Кроме того, существуют модели временных рядов, в которых присутствует циклическая компонента, формирующая изменения анализируемого признака, обусловленные действием долговременных циклов экономической демографической или астрофизической природы (волны Кондратьева, циклы солнечной активности и т.д.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]