Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 4 по эконометрике.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
299.01 Кб
Скачать

Вспомогательная таблица для расчета ошибки аппроксимации и индекса детерминации

Y

x2

x3

yx=0,03+0,30x2-1,08x3

(y - yx)2

1

5

0

1,45

2,99

1,65

0,198

5

12

0

3,51

5,15

0,61

2,214

6

18

0

5,28

10,69

6,52

0,513

0,8

6

1

0,66

3,72

4,27

0,018

3

16

0

4,69

0,07

3,85

2,865

3

14

1

3,03

0,07

0,09

0,001

4

18

1

4,21

1,61

2,18

0,042

0,5

10

2

0,77

4,97

3,85

0,071

2,5

15

2

2,24

0,05

0,24

0,066

1,5

16

3

1,46

1,51

1,61

0,001

27,3

130

10

27,30

30,86

24,87

5,99

Как уже отмечалось, среднее значение показателя y – одинаковое для расчетных и фактических значений, так как их суммы совпадают. Поэтому в расчетах двух дисперсий вычитается одно и то же число y = 2,73 из расчетных и фактических значений признака.

Индекс детерминации

R2= 24,87/30,86= 0,806

Ошибка аппроксимации:

Сравнивая значения этих показателей с индексом детерминации и ошибкой аппроксимации, ранее рассчитанными для уравнения парной линейной регрессии, мы видим, что индекс детерминации для двухфакторного уравнения оказался больше 0,806>0,777, а ошибка аппроксимации меньше 0,774<0,831. Значит, уравнение двухфакторной линейной регрессии лучше описывает реальную статистическую зависимость.

Для сравнительного анализа и оценки различных уравнений регрессии в эконометрике разработаны и другие статистические критерии, которые мы рассмотрим на следующих лекциях.

Заключение. На данной лекции мы рассмотрели методы, которые используются в эконометрике для отбора факторов (независимых переменных), которые целесообразно включать в уравнения множественной регрессии. Было отмечено, что чрезмерно большое количество факторных переменных ухудшает качество эконометрических моделей и достоверность расчетов, выполненных по этим моделям. Была раскрыта сущность конфлюэнтного анализа и анализа мультиколлинеарности, как основного метода отбора факторов, включаемых в модель.

В качестве домашнего задания студентам предлагается (используя данные примера, рассмотренного на лекции) построить уравнение 3х факторной линейной регрессии, включив в него, кроме факторов x2 и x3, один из остальных факторов (по собственному выбору) и рассчитать для вновь построенного уравнения индекс детерминации и ошибку аппроксимации.

1 Для ускоренного расчета коэффициентов корреляции рекомендуется воспользоваться в Excel встроенной статистической функцией: КОРРЕЛ.