
- •2. Диодный ключ. Работа в статическом и динамическом режимах.
- •3. Собственный и примесные проводники.
- •4.Типы полупроводниковых диодов. Параметры Диодов. Типы полупроводниковых диодов:
- •6. Параметрический стабилизатор напряжения.
- •7. Закон распределения носителей в зонах полупроводника. Функция Ферми – Дирака.
- •8. Туннельный диод.
- •9. Работа выхода.
- •10. Варикап.
- •11. Генерация и рекомбинация. Виды пробоев.
- •Vt может работать в 4 режимах, в зависимости от напряжения на его
- •13. Контакты полупроводник – металл.
- •14. Технология изготовления транзисторов.
- •15. Емкости p-n перехода. Схемы замещения p-n перехода.
- •16. Энергетические диаграммы транзистора при включении с общей базой.
- •8. Чрезмерное большое выходное сопротивление затрудняет согласование с нагрузкой. 17. Лавинно-пролетный диод. Применение.
- •18. Схемы включения транзисторов. Схема замещения транзисторов.
- •Схемы замещения транзистора.
- •19. Принцип работы фотоприемников.
- •20. Входные и выходные характеристики транзисторов при различных схемах включения.
- •21. Фоторезисторы. Схемы включения.
- •22. Емкости транзистора. Частотные характеристики транзистора.
- •23. Представление транзистора в виде четырехполюсника и системы статистических параметров.
- •24. Фотодиоды. Схемы включения фотодиодов.
- •25. Определение h-параметров по статическим характеристикам транзистора. Страница 66 методичка по фоэт.
- •26. Лавинные фотодиоды.
- •27. Фототранзисторы. Схемы включения.
- •28. Динамический режим работы транзистора.
- •29. Фототиристоры. Характеристики.
- •30. Транзисторный ключ. Основная схема, увеличение быстродействия.
- •31. Ненасыщенный транзисторный ключ.
- •32. Квантовая система. Энергетические уровни.
- •33. Спонтанное и индуцированное излучение. Трехуровневая квантовая система.
- •34. Высокочастотные транзисторы. Технология изготовления, свойства. 35. Полевые транзисторы. Разновидности. Схемы включения.
- •36. Основы работы полупроводниковых лазеров.
- •37. Схема действия полупроводникового инжекционного лазера. Инжекционный лазер представляет собой инжекционный p - n переход, в котором
- •38. Полевые транзисторы с управляющим p-n переходом.
- •40. Динисторы. Структура, схема замещения, вах.
- •Чем отличается динистор от полупроводникового диода?
- •Принцип работы динистора.
- •Вах динистора.
- •41. Разновидности мдп-транзисторов, статические характеристики.
- •42. Тиристоры и их классификация.
- •43. Полевые транзисторы с изолированным затвором и индуцированным каналом, устройство, вах, основные особенности.
- •44. Характеристики переходных процессов включения тиристоров и их особенности.
- •45. Полевые транзисторы с изолированным затвором и встроенным каналом, устройство, семейство вах, основные особенности.
- •47. Биполярные транзисторы с изолированным затвором (igbt), их устройство и основные особенности.
- •Применение
- •48. Критическая скорость нарастания прямого напряжения на тиристоре. Эффект du/dt. Критическая скорость нарастания напряжения в закрытом состоянии.
- •49. Ненасыщенный транзисторный ключ с нелинейной обратной связью.
- •51. Транзисторный ключ с форсирующим конденсатором.
- •52. Включение тиристорной структуры сигналом управления. Параметры процесса включения тиристора.
- •53. Методы улучшения импульсных и частотных свойств биполярных транзисторов.
- •54. Оособенности процесса выключении тиристора. Области применения тиристора.
- •55. Распределение электрического потенциала в объеме полупроводника.
31. Ненасыщенный транзисторный ключ.
Ненасыщенные транзисторные ключи на биполярных транзисторах имеют повышенное быстродействие и уменьшенное время рассасывания. Основное назначение таких ключей состоит в том, чтобы создать на выходе напряжение, близкое к нулю, или напряжение, близкое к напряжению источника питания. Такой режим работы ключа характерен для схем цифровой и силовой электроники.
Идеализированной схеме
ненасыщенного ключа соответствует
схема, показанная на рис. 8.5,а.
Напряжение смещения
должно
находиться в пределах 0,4…0,6
В. При ненасыщенном транзисторе диод
VD находится в закрытом состоянии и весь
ток источника входного сигнала поступает
в базу транзистора, обеспечивая его
быстрое отпирание. На стыке активного
режима и режима насыщения напряжение
,
и диод открывается. С этого момента
времени ток источника входного сигнала
частично ответвляется в цепь диода, ток
базы уменьшается, что исключает насыщение
транзистора. В таких схемах применяются
высокочастотные диоды, превосходящие
транзистор по быстродействию
Рис.
8.5
Еще более эффективным является применение в схеме ключа диода Шотки (рис. 8.5,б). Такие ключи отличаются большим быстродействием и малым падением напряжения при прямом включении (время восстановления менее 0,1 нс, напряжение отпирания около 0,25 В). При включении в схему ключа диода Шоттки источник напряжения смещения не требуется. Биполярный транзистор с диодом Шоттки называют транзистором Шотки. Его условное графическое обозначение показано на рис. 8.5,в.
К недостаткам ненасыщенных ключей следует отнести:
• повышенное напряжение на открытом ключе;
• пониженную помехоустойчивость;
• пониженную температурную стабильность.
32. Квантовая система. Энергетические уровни.
Энергетический уровень — собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики. Каждый уровень характеризуется определённым состоянием системы, или подмножеством таковых в случае вырождения. Понятие применимо к атомам (электронные уровни), молекулам (различные уровни, соответствующие колебаниям и вращениям), атомным ядрам (внутриядерные энергетические уровни) и т.д.
В современном понятии об орбитальной модели атома, электроны в атоме способны обладать лишь определёнными величинами энергии, и переходить с одного энергетического уровня на другой лишь скачком. Разница между энергетическими уровнями определяет частоту кванта света, выделяемого или поглощаемого при переходе. Каждой паре значений главного квантового числа n и орбитального квантового числа l соответствует определённый уровень энергии, которой может обладать электрон.
33. Спонтанное и индуцированное излучение. Трехуровневая квантовая система.
Трехуровневая
квантовая система и населенность ее
уровней:
34. Высокочастотные транзисторы. Технология изготовления, свойства. 35. Полевые транзисторы. Разновидности. Схемы включения.
Полевой транзистор — полупроводниковый прибор, в котором ток изменяется в результате действия «перпендикулярного» току электрического поля, создаваемого входным сигналом.
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).
Схемы включения полевых транзисторов
Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).
Схемы включения полевых транзисторов:
На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.
А) С общим истоком. Б) С общим затвором. В) С общим стоком.
Разновидности:
Транзисторы с управляющим p-n переходом: Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.
Транзисторы с изолированным затвором (МДП-транзисторы)
Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика. Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом. МДП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).
В МДП-транзисторах со встроенным каналом у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.
МДП-структуры специального назначения ВЧ, СВЧ транзисторы.