
- •21. Магнитное поле и его характеристики. Линии магнитной индукции.
- •22. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •23. Закон Ампера. Взаимодействие параллельных токов
- •24. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля. Магнитное поле движ заряда. Сила Лоренца.Виды движения частицы в м.Поле
- •Магнитное поле движущегося заряда
- •Действие магнитного поля на движущийся заряд
- •Движение заряженных частиц в магнитном поле
- •25. Эффект Холла. Постоянная Холла
- •26. Циркуляция вектора в магнитного поля в вакууме. Магнитное поле прямого тока. Сравнение теорем о циркуляции в и е
- •27. Магнитные поля соленоида и тороида
- •28. Поток вектора магнитной индукции. Магнитный поток через произвольную поверхность. Теорема Гаусса для поля в. Поток вектора в через соленоид.
- •29. Работа по перемещению проводника и контура с током в магнитном поле
- •30. Явление электромагнитной индукции (опыты Фарадея). Закон Фарадея и его вывод из закона сохранения энергии. Вывод закона Фарадея Максвеллом.
- •Закон Фарадея и его вывод из закона сохранения энергии
- •31. Индукционный ток. 3 случая изменения потока магнитной индукции.
- •Вихревые токи (токи Фуко)
- •32. Индуктивность контура. Самоиндукция
- •33. Токи при размыкании и замыкании цепи
- •34. Взаимная индукция. Эдс взаимной индукции. Взаимная индуктивность. Трансформаторы и принцип их работы. Коэфф трансформации и принцип их работы.
- •Трансформаторы
- •35. Энергия магнитного поля. Энергия магнитного поля на примере соленоида. Объемная плотность энергии.
- •36.Электрические токи в атомах и молекулах. Орбитальный момент электрона, сила тока, орбитальный механический момент, гиромагнитное отношение орбитальных моментов, собственный магнитный момент (спин).
- •37. Парамагнетики и диа-магнетики. Намагниченность. Магнитная восприимчивость в веществе. Вектор магнитной индукции результирующего поля в магнетике. Ферромагнетики.
- •Намагниченность. Магнитное поле в веществе
- •Ферромагнетики и их свойства
- •Природа ферромагнетизма
- •38. Теорема о циркуляции вектора магнитной индукции в и вектора напряженности магнитного поля н. Связь в и н. Условия на границе двух магнетиков.
- •Условия на границе раздела двух магнетиков
- •39. Вихревое электрическое поле. Циркуляция вектора напряженности вихревого электрического поля.
- •40. Ток смещения. Полный ток. Полная система уравнений Максвелла для электромагнитного поля.
- •Уравнения Максвелла для электромагнитного поля
- •41. Волновая природа света, принцип Гюйгенса. Законы преломления и отражения света. Когерентность и монохроматичность световых волн.
- •Когерентность и монохроматичность световых волн
- •42. Интерференция света. Методы наблюдения интеференции света. Расчет интерференции от двух источников света.
- •Методы наблюдения интерференции света
- •43. Интерференция света от пластинки постоянной и переменной величины. Кольца Ньютона. Просветление оптики. Интерферометры.
- •Применение интерференции света
- •44.Дифракция света. Принцип Гюйгенса — Френеля. Метод Френеля (зоны Френеля). Дифракции на отверстии и круглом диске.
- •Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Френеля на круглом отверстии и диске
- •45. Дифракция Фраунгофера на одной щели и дифракционной решетке. Условия минимумов и максимумов.
- •Дифракция Фраунгофера на дифракционной решетке
- •46.Критерий Рэлея. Разрешающая способность оптических приборов
- •47. Естественный и поляризованный свет. Закон Малюса. Прохождение света через два поляроида.
- •Поляризационные призмы и поляроиды
- •48. Поляризация света при отражении и преломлении. Закон Брюстера. Поляризационные призмы
- •49. Двойное лучепреломление. Пластинка в четверть длины волны – получение эллиптически поляризованного света.
- •50. Искусственная оптическая анизотропия. Вращение плоскости поляризации
- •Вращение плоскости поляризации
- •51. Дисперсия света. Электронная теория дисперсии Лоренца.
- •Электронная теория дисперсии светя
- •52. Поглощение (абсорбция) света. Закон Бугера-Ламбертаю Виды спектров поглощения.
- •53. Законы теплового излучения (Кирхгофа, Вина, Стефана-Больцмана). Абс черное и серое тело.
- •Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •54. Формулы Планка для излучения абс черного тела. Методы оптической пирометрии.
- •Оптическая пирометрия. Тепловые источники света
- •55. Внешний и внутренний фотоэффект.
- •Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •Применение фотоэффекта
Закон Кирхгофа
Кирхгоф, опираясь
на второй закон термодинамики и анализируя
условия равновесного излучения в
изолированной системе тел, установил
количественную связь между спектральной
плотностью энергетической светимости
и спектральной поглощательной способностью
тел. Отношение спектральной плотности
энергетической светимости к спектральной
поглощательной способности не зависит
от природы тела; оно является для всех
тел универсальной функцией частоты
(длины волны) и температуры (закон
Кирхгофа):
(198.1)
Для черного тела , поэтому из закона Кирхгофа (см. (198.1)) вытекает, что R,T для черного тела равна r,T. Таким образом, универсальная функция Кирхгофа r,T есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.
Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и ), так как А,T< 1 и поэтому R,T <r,T. Кроме того, из (198.1) вытекает, что если тело при данной температуре Т не поглощает электромагнитные волны в интервале частот от до +d, то оно их в этом интервале частот при температуре T и не излучает, так как при А,T =0
R,T =0.
Используя закон
Кирхгофа, выражение для энергетической
светимости тела (197.2) можно записать в
виде
Для
серого тела
(198.2)
Где
— энергетически светимость черного тела (зависит только от температуры).
Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое закону Кирхгофа не подчиняется, не является тепловым.
§ 199. Законы Стефана — Больцмана и смещения Вина
Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетическое светимости черного тела является универсальное функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.
Австрийский физик
И. Стефан (1835—1893), анализируя
экспериментальные данные (1879), и Л.
Больцман, применяя термодинамический
метод (1884), решили эту задачу лишь
частично, установив зависимость
энергетической светимости Re
от температуры. Согласно закону
Стефана — Больцмана,
(199.1)
т.е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры; — постоянная Стефана — Больцмана: ее экспериментальное значение равно 5,6710–8 Вт/(м2 К4).
З
акон
Стефана — Больцмана, определяя зависимость
Rе от
температуры, не дает ответа относительно
спектрального состава излучения черного
тела. Из экспериментальных кривых
зависимости функции r,T
от длины волны
при различных температурах (рис. 287)
следует, что распределение энергии в
спектре черного тела является
неравномерным. Все кривые имеют явно
выраженный максимум, который по мере
повышения температуры смещается в
сторону более коротких волн. Площадь,
ограниченная кривой зависимости r,T
от и осью
абсцисс, пропорциональна энергетической
светимости Re
черного тела и, следовательно, по закону
Стефана — Больцмана, четвертой
степени температуры.
Немецкий физик В.
Вин (1864—1928), опираясь на законы термо-
и электродинамики, установил
зависимость длины волны max,
соответствующей максимуму функции
r,T,
от температуры Т. Согласно закону
смещения Вина,
(199.2)
т. е. длина волны max, соответствующая максимальному значению спектральной плотности энергетической светимости r,T черного тела, обратно пропорциональна его термодинамической температуре, b — постоянная Вина; ее экспериментальное значение равно 2,910–3 мК. Выражение (199.2) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции r,T по мере возрастания температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).