
- •21. Магнитное поле и его характеристики. Линии магнитной индукции.
- •22. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •23. Закон Ампера. Взаимодействие параллельных токов
- •24. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля. Магнитное поле движ заряда. Сила Лоренца.Виды движения частицы в м.Поле
- •Магнитное поле движущегося заряда
- •Действие магнитного поля на движущийся заряд
- •Движение заряженных частиц в магнитном поле
- •25. Эффект Холла. Постоянная Холла
- •26. Циркуляция вектора в магнитного поля в вакууме. Магнитное поле прямого тока. Сравнение теорем о циркуляции в и е
- •27. Магнитные поля соленоида и тороида
- •28. Поток вектора магнитной индукции. Магнитный поток через произвольную поверхность. Теорема Гаусса для поля в. Поток вектора в через соленоид.
- •29. Работа по перемещению проводника и контура с током в магнитном поле
- •30. Явление электромагнитной индукции (опыты Фарадея). Закон Фарадея и его вывод из закона сохранения энергии. Вывод закона Фарадея Максвеллом.
- •Закон Фарадея и его вывод из закона сохранения энергии
- •31. Индукционный ток. 3 случая изменения потока магнитной индукции.
- •Вихревые токи (токи Фуко)
- •32. Индуктивность контура. Самоиндукция
- •33. Токи при размыкании и замыкании цепи
- •34. Взаимная индукция. Эдс взаимной индукции. Взаимная индуктивность. Трансформаторы и принцип их работы. Коэфф трансформации и принцип их работы.
- •Трансформаторы
- •35. Энергия магнитного поля. Энергия магнитного поля на примере соленоида. Объемная плотность энергии.
- •36.Электрические токи в атомах и молекулах. Орбитальный момент электрона, сила тока, орбитальный механический момент, гиромагнитное отношение орбитальных моментов, собственный магнитный момент (спин).
- •37. Парамагнетики и диа-магнетики. Намагниченность. Магнитная восприимчивость в веществе. Вектор магнитной индукции результирующего поля в магнетике. Ферромагнетики.
- •Намагниченность. Магнитное поле в веществе
- •Ферромагнетики и их свойства
- •Природа ферромагнетизма
- •38. Теорема о циркуляции вектора магнитной индукции в и вектора напряженности магнитного поля н. Связь в и н. Условия на границе двух магнетиков.
- •Условия на границе раздела двух магнетиков
- •39. Вихревое электрическое поле. Циркуляция вектора напряженности вихревого электрического поля.
- •40. Ток смещения. Полный ток. Полная система уравнений Максвелла для электромагнитного поля.
- •Уравнения Максвелла для электромагнитного поля
- •41. Волновая природа света, принцип Гюйгенса. Законы преломления и отражения света. Когерентность и монохроматичность световых волн.
- •Когерентность и монохроматичность световых волн
- •42. Интерференция света. Методы наблюдения интеференции света. Расчет интерференции от двух источников света.
- •Методы наблюдения интерференции света
- •43. Интерференция света от пластинки постоянной и переменной величины. Кольца Ньютона. Просветление оптики. Интерферометры.
- •Применение интерференции света
- •44.Дифракция света. Принцип Гюйгенса — Френеля. Метод Френеля (зоны Френеля). Дифракции на отверстии и круглом диске.
- •Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Френеля на круглом отверстии и диске
- •45. Дифракция Фраунгофера на одной щели и дифракционной решетке. Условия минимумов и максимумов.
- •Дифракция Фраунгофера на дифракционной решетке
- •46.Критерий Рэлея. Разрешающая способность оптических приборов
- •47. Естественный и поляризованный свет. Закон Малюса. Прохождение света через два поляроида.
- •Поляризационные призмы и поляроиды
- •48. Поляризация света при отражении и преломлении. Закон Брюстера. Поляризационные призмы
- •49. Двойное лучепреломление. Пластинка в четверть длины волны – получение эллиптически поляризованного света.
- •50. Искусственная оптическая анизотропия. Вращение плоскости поляризации
- •Вращение плоскости поляризации
- •51. Дисперсия света. Электронная теория дисперсии Лоренца.
- •Электронная теория дисперсии светя
- •52. Поглощение (абсорбция) света. Закон Бугера-Ламбертаю Виды спектров поглощения.
- •53. Законы теплового излучения (Кирхгофа, Вина, Стефана-Больцмана). Абс черное и серое тело.
- •Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •54. Формулы Планка для излучения абс черного тела. Методы оптической пирометрии.
- •Оптическая пирометрия. Тепловые источники света
- •55. Внешний и внутренний фотоэффект.
- •Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •Применение фотоэффекта
Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.
В основе теории Максвелла лежат рассмотренные выше четыре уравнения:
1. Электрическое
поле (см. § 137) может быть как потенциальным
(ЕQ), так и
вихревым (ЕB),
поэтому напряженность суммарного поля
Е = ЕQ +
ЕB. Так как
циркуляция вектора ЕQ
равна нулю (см. (137.3)), а циркуляция вектора
ЕB определяется
выражением (137.2), то циркуляция вектора
напряженности суммарного поля
Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.
2. Обобщенная
теорема о циркуляции вектора Н (см.
(138.4)):
Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.
3. Теорема Гаусса
для поля D (см. (89.3)):
(139.1)
Если заряд
распределен внутри замкнутой поверхности
непрерывно с объемной плотностью ,
то формула (139.1) запишется в виде
4. Теорема Гаусса
для поля В (см. (120.3)):
Итак, полная система уравнений Максвелла в интегральной форме:
Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):
где 0 и 0 — соответственно электрическая и магнитная постоянные, и — соответственно диэлектрическая и магнитная проницаемости, — удельная проводимость вещества.
Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
Для стационарных полей (E=const и B=const) уравнения Максвелла примут вид
т.е. источниками электрического поля в данном случае являются только электрические заряды, источниками магнитного — только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.
Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса
можно представить полную систему уравнении Максвелла в дифференциальном форме (характеризующих поле в каждой точке пространства):
Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла — интегральная и дифференциальная — эквивалентны. Однако если имеются поверхности разрыва – поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений является более общей.
Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Чтобы достичь математической эквивалентности обеих форм уравнений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):
(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов проводимости).
Уравнения Максвелла — наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.
Теория Максвелла, являясь обобщением основных законов электрических и магнитных явлений, не только смогла объяснить уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явления. Одним из важных выводов этой теории явилось существование магнитного поля токов смещения (см. § 138), что позволило Максвеллу предсказать существование электромагнитных волн — переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3108 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857—1894), доказавшим, что законы их возбуждения и распространения полностью описываются уравнениями Максвелла. Таким образом, теория Максвелла была экспериментально подтверждена.
К электромагнитному полю применим только принцип относительности Эйнштейна, так как факт распространения электромагнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.
Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инерциальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инвариантны относительно преобразований Лоренца: их вид не меняется при переходе от одной инерциальной системы отсчета к другой, хотя величины Е, В, D, Н в них преобразуются по определенным правилам.
Из принципа относительности вытекает, что отдельное рассмотрение электрического и магнитного полей имеет относительный смысл. Taк, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь неподвижными относительно одной инерциальной системы отсчета, движутся относительно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвижный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке пространства постоянное магнитное поле, движется относительно других инерциальных систем, и создаваемое им переменное магнитное поле возбуждает вихревое электрическое поле.
Таким образом, теория Максвелла, ее экспериментальное подтверждение, а также принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базирующейся на представлении об электромагнитном поле.