
- •45. Энергия витка с постоянным током во внешнем однородном магнитном поле.
- •46. Магнитный поток через замкнутую поверхность. Вихревой характер магнитного поля.
- •47. Общее выражение работы, совершаемой в магнитном поле над контуром с током.
- •48. Закон Фарадея для электромагнитной индукции. Правило Ленца.
- •49. Выражение эдс индукции, возникающей в проводнике, движущемся в магнитном поле.
- •50. Явление самоиндукции. Эдс самоиндукции. Индуктивность контура с током.
- •51. Получите выражение для индуктивности длинного соленоида.
- •52. Характеристики магнитного поля в веществе – магнитная индукция ,напряженность магнитного поля, намагниченность. Связь между ними.
- •1. Понятие магнитного момента атома.
- •53. Магнитная проницаемость и магнитная восприимчивость. Их определения и связь между ними.
- •56. Ферромагнетики, их основные свойства. Гистерезис. Применение ферромагнетиков.
- •55. Пара- и даимагнетики, их магнитные свойства. Поведение Диамангнетиков парамагнетиков в неоднородном магнитном поле.
- •57. Вихревое электрическое поле. Первое уравнение Максвелла в интегральной форме.
- •58. Максвелловская гипотеза о токах смещения . Второе уравнение Максвелла в интегральной форме.
- •59. Система уравнений Максвелла в интегральной форме с использованием векторов магнитной индукции и напряженности электрического поля.
- •60. Система уравнений Максвелла в интегральной форме в веществе.
- •61. Дифференциальное уравнение свободных гармонических колебаний и его решение. Амплитуда, период, начальная фаза колебаний.
- •62. Скорость и ускорение при гармонических колебаниях. Максимальная скорость и максимальное ускорение.
- •63. Сложение одинаково направленных гармонических колебаний одинаковой частоты. Нахождение амплитуды суммарного колебания с помощью метода векторных диаграмм.
- •64. Пружинный маятник. Дифференциальное уравнение колебаний пружинного маятника. Период его малых колебаний.
- •65. Математический маятник. Дифференциальное уравнение колебаний математического маятника. Период его малых колебаний.
- •67. Кинетическая ,потенциальная и полная энергия гармонических колебаний.
- •68. Дифференциальное уравнение затухающих колебаний и его решение. График зависимости амплитуды от времени.
- •69. Период затухающих колебаний. Логарифмический декремент колебаний. Время релаксации. Апериодическое движение.
- •70. Вынужденные колебания. Дифференциальное уравнение вынужденных колебаний. Установившиеся колебания.
- •7 2.Волновое движение. Продольные поперечные волны, примеры. Волновой фронт.
- •73. Уравнение плоской бегущей волны. Длина волны. Волновое число. Разность фаз двух точек волны.
- •74. Стоячие волны. Получите выражение для смещения в стоячей волне. Узлы и пучности. Условие стационарности стоячих волн.
- •76. Скорость электромагнитной волны в веществе. Показатель преломления. Закон преломления волны на границе двух сред.
- •77. Скорость электромагнитной волны в веществе. Показатель преломления. Полное внутреннее отражение . Оптические волноводы.
- •78. Связь характеристик электрического и магнитного поля в элетромагнитной волне.
- •79. Энергия, переносимая электромагнитной волной. Плотность потока энергии(вектор Пойтинга) Ее размерность.
- •80. Интерференция света. Когерентность световых волн. Интерференционное условие максимумов и минимумов.
- •81. Интерференция света. Когерентность световых волн. Получение интерференционной картины от двух точечных когерентных источников (опыт Юнга).
- •82. Получите выражение для координат интерференционных полос на экране в опыте юнга.
- •83. Интерференция в тонкой пленке с параллельными поверхностями(полосы равного наклона).Выражение для оптической разности хода в этом случае.
- •85. Дифракционная решетка. Примерная картина дифракции. Получите выражение для определения выражения положения главных максимумов в картине дифракции.
- •86. Дифракционная картина как спектральный прибор. Формула для определения числа щелей, необходимого для разрешения двух близких длин волн.
- •87. Поляризация света . Естественный и поляризованный свет. Поляризация при отражении от диэлектрика. Угол Брюстера.
- •88. Поляризация света. Естественный и поляризованный свет. Поляризация при прохождении света через кристаллы. Двойное лучепреломление. Поляризатор. Закон Малюса.
85. Дифракционная решетка. Примерная картина дифракции. Получите выражение для определения выражения положения главных максимумов в картине дифракции.
Дифракционная решётка – пространственная периодическая структура, период которой соизмерим с длиной световой волны. Различают пропускательные, отражательные, амплитудные и фазовые решетки. Пропускательные решетки работают на пропускание света, отражательные – на отражение. Амплитудные решетки пространственно модулируют амплитуду, фазовые - фазу световой волны. Простейшая амплитудная пропускательная решетка представляет собой систему равноотстоящих параллельных щелей в непрозрачном экране. Ширину щели обозначим b, а ширину непрозрачных промежутков между щелями – а. Величина d=a+b называется периодом или постоянной дифракционной решетки.
Отражательную амплитудную решетку изготавливают путем нанесения штрихов на плоское или вогнутое зеркало.
Общая ширина решетки l, число щелей N и постоянная решетки d связаны равенством l =Nd
Если известно число штрихов (N), приходящихся на 1 мм решѐтки, то период решѐтки находят по формуле: d = 1 / N мм.
Рассмотрим дифракцию плоской световой волны на периодической системе щелей в непрозрачном экране. В соответствии с принципом Гюйгенса–Френеля каждая щель решетки является источником вторичных волн. Разность хода между волнами, испускаемыми соседними щелями Δ=dsinφ. Условие главных максимумов принимает вид
Δ=
dsinφ=m
,
m=0,±1, ±2… (4)
где m – порядок дифракционного максимума.
Максимум нулевого порядка наблюдается при φ=0, первого порядка при sinφ=+- /d, второго порядка при sinφ=+-2 /d .
Главные минимумы соответствуют таким углам φ, в направлении которых ни одна из щелей не распространяет свет, поэтому условие главных минимумов, как и при дифракции на одной щели, выражает формула bsinφ=m , m=±1, ±2,±3…
дифракционная
картина
86. Дифракционная картина как спектральный прибор. Формула для определения числа щелей, необходимого для разрешения двух близких длин волн.
Кроме главных, имеется большое число слабых побочных максимумов, разделенных дополнительными минимумами. Положение главных максимумов (кроме центрального) зависит от длины волны . Поэтому при пропускании через решетку белого света все максимумы ненулевого порядка разложатся в спектр, фиолетовый конец которого обращен к центру дифракционной картины, а красный – наружу. Эта задача является актуальной для спектрального анализа, поскольку дифракционные решетки позволяют пространственно разделить лучи с разными длинами волн, и именно по отклонению луча в дифракционной решетке определяется длина волны света в решеточных спектрометрах. Таким образом, дифракционная решетка представляет собой спектральный прибор.
Разрешающая
сила дифракционной решетки:
,
где δλ – наименьшая разность длин волн двух близких спектральных линий, воспринимаемых при наблюдении раздельно, m – порядок спектра, N – общее число щелей дифракционной решетки.
87. Поляризация света . Естественный и поляризованный свет. Поляризация при отражении от диэлектрика. Угол Брюстера.
Для электромагнитных волн поляризация — явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H.
В естественном свете колебания различных направлений быстро и беспорядочно сменяют друг друга. Свет, в котором направления колебаний упорядочены каким-либо образом, называется поляризованным.
Обозначим через ΘБр угол, удовлетворяющий условию tgΘБр = n12 (3) ,где n12 — показатель преломления второй среды относительно первой. При угле падения J1, равном ΘБр, отраженный луч полностью поляризован (он содержит только колебания, перпендикулярные к плоскости падения). Степень поляризации преломленного луча при угле падения, равном ΘБр, достигает наибольшего значения, однако этот луч остается поляризованным только частично.
Соотношение (3) носит название закона Брюстера, а угол ΘБр это Угол Брюстера.
Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко убедиться в том, что при падении света подуглом Брюстера отраженный и преломленный лучи взаимно перпендикулярны, т.е.
Угол Брюстера. Иллюстрация поляризации отражённого света, падающего на границу раздела сред под углом Брюстера.