
- •45. Энергия витка с постоянным током во внешнем однородном магнитном поле.
- •46. Магнитный поток через замкнутую поверхность. Вихревой характер магнитного поля.
- •47. Общее выражение работы, совершаемой в магнитном поле над контуром с током.
- •48. Закон Фарадея для электромагнитной индукции. Правило Ленца.
- •49. Выражение эдс индукции, возникающей в проводнике, движущемся в магнитном поле.
- •50. Явление самоиндукции. Эдс самоиндукции. Индуктивность контура с током.
- •51. Получите выражение для индуктивности длинного соленоида.
- •52. Характеристики магнитного поля в веществе – магнитная индукция ,напряженность магнитного поля, намагниченность. Связь между ними.
- •1. Понятие магнитного момента атома.
- •53. Магнитная проницаемость и магнитная восприимчивость. Их определения и связь между ними.
- •56. Ферромагнетики, их основные свойства. Гистерезис. Применение ферромагнетиков.
- •55. Пара- и даимагнетики, их магнитные свойства. Поведение Диамангнетиков парамагнетиков в неоднородном магнитном поле.
- •57. Вихревое электрическое поле. Первое уравнение Максвелла в интегральной форме.
- •58. Максвелловская гипотеза о токах смещения . Второе уравнение Максвелла в интегральной форме.
- •59. Система уравнений Максвелла в интегральной форме с использованием векторов магнитной индукции и напряженности электрического поля.
- •60. Система уравнений Максвелла в интегральной форме в веществе.
- •61. Дифференциальное уравнение свободных гармонических колебаний и его решение. Амплитуда, период, начальная фаза колебаний.
- •62. Скорость и ускорение при гармонических колебаниях. Максимальная скорость и максимальное ускорение.
- •63. Сложение одинаково направленных гармонических колебаний одинаковой частоты. Нахождение амплитуды суммарного колебания с помощью метода векторных диаграмм.
- •64. Пружинный маятник. Дифференциальное уравнение колебаний пружинного маятника. Период его малых колебаний.
- •65. Математический маятник. Дифференциальное уравнение колебаний математического маятника. Период его малых колебаний.
- •67. Кинетическая ,потенциальная и полная энергия гармонических колебаний.
- •68. Дифференциальное уравнение затухающих колебаний и его решение. График зависимости амплитуды от времени.
- •69. Период затухающих колебаний. Логарифмический декремент колебаний. Время релаксации. Апериодическое движение.
- •70. Вынужденные колебания. Дифференциальное уравнение вынужденных колебаний. Установившиеся колебания.
- •7 2.Волновое движение. Продольные поперечные волны, примеры. Волновой фронт.
- •73. Уравнение плоской бегущей волны. Длина волны. Волновое число. Разность фаз двух точек волны.
- •74. Стоячие волны. Получите выражение для смещения в стоячей волне. Узлы и пучности. Условие стационарности стоячих волн.
- •76. Скорость электромагнитной волны в веществе. Показатель преломления. Закон преломления волны на границе двух сред.
- •77. Скорость электромагнитной волны в веществе. Показатель преломления. Полное внутреннее отражение . Оптические волноводы.
- •78. Связь характеристик электрического и магнитного поля в элетромагнитной волне.
- •79. Энергия, переносимая электромагнитной волной. Плотность потока энергии(вектор Пойтинга) Ее размерность.
- •80. Интерференция света. Когерентность световых волн. Интерференционное условие максимумов и минимумов.
- •81. Интерференция света. Когерентность световых волн. Получение интерференционной картины от двух точечных когерентных источников (опыт Юнга).
- •82. Получите выражение для координат интерференционных полос на экране в опыте юнга.
- •83. Интерференция в тонкой пленке с параллельными поверхностями(полосы равного наклона).Выражение для оптической разности хода в этом случае.
- •85. Дифракционная решетка. Примерная картина дифракции. Получите выражение для определения выражения положения главных максимумов в картине дифракции.
- •86. Дифракционная картина как спектральный прибор. Формула для определения числа щелей, необходимого для разрешения двух близких длин волн.
- •87. Поляризация света . Естественный и поляризованный свет. Поляризация при отражении от диэлектрика. Угол Брюстера.
- •88. Поляризация света. Естественный и поляризованный свет. Поляризация при прохождении света через кристаллы. Двойное лучепреломление. Поляризатор. Закон Малюса.
45. Энергия витка с постоянным током во внешнем однородном магнитном поле.
Контур
с током, помещенный в магнитное поле,
обладает запасом энергии. Действительно,
чтобы повернуть контур с током на
некоторый угол
в направлении, обратном направлению
его поворота в магнитном поле, необходимо
совершить работу против сил, действующих
на этот контур со стороны поля. По
величине эта работа равна
.
Совершенная над контуром работа идет на увеличение его энергии. Поворачиваясь в первоначальное положение, контур возвратит затраченную на его поворот работу, совершив ее над какими-либо телами. Следовательно, запасенная контуром энергия есть:
.
(при
выводе этой формулы мы приняли, что при
энергия контура W,
определенная с точностью до произвольной
постоянной, равна нулю). Полученную
формулу можно написать также в виде:
Устойчивое равновесие |
Неустойчивое равновесие |
Положения
равновесия контура с током в магнитном
поле. Из приведенной формулы видно, что
устойчивому
положению равновесия контура с током
в магнитном поле (рис.9.3) соответствует
ориентация, при которой векторы
и
параллельны (α
= 0);
в этом случае энергия контура минимальна
и равна
.
Неустойчивому
положению равновесия соответствует
ориентация, при которой векторы
и
антипараллельны (α
= π);
в этом случае энергия контура максимальна
и равна
.
46. Магнитный поток через замкнутую поверхность. Вихревой характер магнитного поля.
Теорема
Гаусса для индукции магнитного поля:
«Поток вектора магнитной индукции через
любую замкнутую поверхность равен
нулю».
Представим себе некоторую замкнутую поверхность в магнитном поле. Линии магнитной индукции всегда замкнуты, они не имеют начала и конца, Поэтому количество входящих в поверхность линий будет равно количеству выходящих из нее линий. Магнитный поток пропорционален количеству линий индукции, следовательно, поток будет равен нулю. Равенство нулю магнитного потока через любую замкнутую поверхность свидетельствует о том, что магнитное поле не имеет источников этого поля (магнитных зарядов не существует). Таким образом, магнитное поле является вихревым, т.е. не имеющим источников его образования.
47. Общее выражение работы, совершаемой в магнитном поле над контуром с током.
Рассмотрим
контур 1-2-3-4 с током I
в неоднородном магнитном поле. Контур
будем считать достаточно малым, так
чтобы в его пределах магнитную индукцию
можно было считать постоянной. На участки
контура будут действовать магнитные
силы (см. рис.). Контур переместился в
положение 1-2-3-4.
Полная работа по перемещению контура
складывается из работ сил по перемещению
только участков 2-3 и 1-4. Силы, действующие
на участки 1-2 и 3-4, работу не совершают,
т.к. они перпендикулярны перемещению:
|
Работа по перемещению контура с током в магнитном поле |
Работа по перемещению контура с током в магнитном поле равна произведению силы тока в контуре на разность магнитных потоков, пронизывающих площадь контура в конечном и начальном его положениях.