
- •Определение ос. Функции ос. Ос как виртуальная машина и как система управления ресурсами.
- •Монолитная архитектура. Преимущества и недостатки монолитной архитектуры. Архитектура ос. Ядро и вспомогательные модули
- •Микроядерная архитектура. Преимущества и недостатки микроядерной архитектуры
- •Понятия «процесс» и «поток». Состояния потока. Диаграмма состояний потока. Контекст и дескриптор.
- •Вытесняющие алгоритмы планирования процессов и потоков. Вытесняющие и невытесняющие алгоритмы планирования
- •Алгоритмы распределения памяти с использованием дискового пространства. Страничное распределение виртуальной памяти.
- •Физическая организация файлов
- •Классификация ос.
- •Архитектура ос. Ядро и вспомогательные модули ос. Архитектура современных ос.
- •Ядро в привилегированном режиме. Многослойная структура ядра.
- •Аппаратная зависимость и переносимость ос. Типовые средства аппаратной поддержки ос. Машинно-зависимые и машинно-независимые компоненты ос.
- •Мультипрограммирование и мультипроцессорная обработка. Понятия «процесс» и «поток». Создание, планирование и диспетчеризация потоков.
- •Вытесняющие и не вытесняющие алгоритмы планирования.
- •Мультипрограммирование на основе прерываний. Назначение и типы прерываний. Контроллер прерываний.
- •Механизм обработки прерываний в реальном и защищенном режимах процессоров Intel.
- •Синхронизация процессов и потоков. Блокирующие переменные. Системные функции Post() и Wait().
- •V(s): переменная s увеличивается на 1 единым действием. Выборка, наращивание и запоминание не могут быть прерваны. К переменной s нет доступа другим потокам во время выполнения этой операции.
- •Тупики. Условия возникновения тупиков. Задачи ос, связанные с решением проблемы тупиков.
- •Функции ос по управлению памятью. Типы адресов. Способы преобразования адресов.
- •Алгоритмы распределения памяти без использования дискового пространства.
- •Виртуальная память. Алгоритмы распределения виртуальной памяти.
- •Адресация в защищенном режиме микропроцессора Intel. Плоская модель памяти. Pae режим адресации.
- •Иерархия запоминающих устройств. Кэширование данных.
- •Задачи ос по управлению вводом/выводом. Физическая организация устройств ввода/вывода. Асинхронный и синхронный ввод/вывод.
- •Понятие о файле. Задачи ос по управлению файлами. Типы файлов. Файловые структуры. Атрибуты файлов. Логическая организация файлов.
- •Общая модель файловой системы. Архитектура переключаемых файловых систем.
- •Файловые системы fat, ntfs, ext2(3)fs.
- •Назначение и состав bios. Настройка параметров bios.
- •Integrated Peripherals — настройка параметров интегрированных периферийных устройств, которые поддерживаются южным мостом — таких, как гибкие и жесткие диски, адаптеры, порты и др.
Мультипрограммирование на основе прерываний. Назначение и типы прерываний. Контроллер прерываний.
Прерывание – это способ переключения процессора на выполнение потока команд, отличного от того который выполнялся, с последующим возвратом.
Различают следующие типы прерываний:
· внешние (аппаратные);
· внутренние (исключения -exception);
· программные.
Внешние прерывания происходят асинхронно, т.е. происходят в случайный момент времени в процессе выполнения программы (например, от внешних устройств), внутренние – синхронно, т.е. возникают по конкретной причине и можно предугадать возникновение такого прерывания (например, при делении на ноль).
Программные прерывания не являются "истинными" прерываниями. Они возникают при выполнении определенной команды процессора и применяются в том случае, когда необходимо выполнить некоторые привилегированные действия (например обратится к порту компьютера).
Прерываниям равного значения приписываются уровни приоритетов (уровни - IRQ).
Каждое из прерываний обслуживается обработчиком прерываний (Interrupt Service Routine).
Внешние – обрабатываются драйверами, внутренние – модулями ядра, программные – процедурами из API.
Механизм обработки прерываний в реальном и защищенном режимах процессоров Intel.
Прерывания в реальном режиме
В реальном режиме имеются программные и аппаратные прерывания. Программные прерывания инициируются командой INT, аппаратные - внешними событиями, асинхронными по отношению к выполняемой программе. Обычно аппаратные прерывания инициируются аппаратурой ввода/вывода после завершения выполнения текущей операции.
Кроме того, некоторые прерывания зарезервированы для использования самим процессором - прерывания по ошибке деления, прерывания для пошаговой работы, немаскируемое прерывание и т.д.
Для обработки прерываний в реальном режиме процессор использует таблицу векторов прерываний. Эта таблица располагается в самом начале оперативной памяти, т.е. её физический адрес - 00000.
Таблица векторов прерываний реального режима состоит из 256 элементов по 4 байта, таким образом её размер составляет 1 килобайт. Элементы таблицы - дальние указатели на процедуры обработки прерываний. Указатели состоят из 16-битового сегментного адреса процедуры обработки прерывания и 16-битового смещения. Причём смещение хранится по младшему адресу, а сегментный адрес - по старшему.
Когда происходит программное или аппаратное прерывание, текущее содержимое регистров CS, IP а также регистра флагов FLAGS записывается в стек программы (который, в свою очередь, адресуется регистровой парой SS:SP). Далее из таблицы векторов прерываний выбираются новые значения для CS и IP, при этом управление передаётся на процедуру обработки прерывания.
Перед входом в процедуру обработки прерывания принудительно сбрасываются флажки трассировки TF и разрешения прерываний IF. Поэтому если ваша процедура прерывания сама должна быть прерываемой, вам необходимо разрешить прерывания командой STI. В противном случае, до завершения процедуры обработки прерывания все прерывания будут запрещены.
Завершив обработку прерывания, процедура должна выдать команду IRET, по которой из стека будут извлечены значения для CS, IP, FLAGS и загружены в соответствующие регистры. Далее выполнение прерванной программы будет продолжено.
Что же касается аппаратных маскируемых прерываний, то в компьютере IBM AT и совместимых с ним существует всего шестнадцать таких прерываний, обозначаемых IRQ0-IRQ15. В реальном режиме для обработки прерываний IRQ0-IRQ7 используются вектора прерываний от 08h до 0Fh, а для IRQ8-IRQ15 - от 70h до 77h.
Прерывания защищённого режима
В защищённом режиме все прерывания разделяются на два типа - обычные прерывания и исключения (exception - исключение, особый случай). Обычное прерывание инициируется командой INT (программное прерывание) или внешним событием (аппаратное прерывание). Перед передачей управления процедуре обработки обычного прерывания флаг разрешения прерываний IF сбрасывается и прерывания запрещаются.
Исключение происходит в результате ошибки, возникающей при выполнении какой-либо команды, например, если команда пытается выполнить запись данных за пределами сегмента данных или использует для адресации селектор, который не определён в таблице дескрипторов. По своим функциям исключения соответствуют зарезервированным для процессора внутренним прерываниям реального режима. Когда процедура обработки исключения получает управление, флаг IF не изменяется. Поэтому в мультизадачной среде особые случаи, возникающие в отдельных задачах, не оказывают влияния на выполнение остальных задач. В защищённом режиме прерывания могут приводить к переключению задач. О задачах и мультизадачности мы будем говорить в следующей главе. Теперь перейдём к рассмотрению механизма обработки прерываний и исключений в защищённом режиме.