
- •Введение. (Основные понятия, техника, технология, механизм, машина, конструкционные материалы)
- •Основные свойства металлов и сплавов.
- •Общие понятия о композитах ( дисперсно-упрочненные, волокнисто-упрочненные).
- •Классификация композитных материалов.
- •Армирующие волокна композитных материалов ( общие представления, эксплуатационные требования, технологические)
- •Волокна углерода, бора, карбида кремния, металлическая проволока, нитевидные кристаллы.
- •Матрицы композитных материалов (понятия, назначения). Требования к матрицам (эксплуатационные требования, технологические).
- •Материалы матриц.
- •Способы получения полуфабрикатов и готовых изделий из волокнистых композиционных материалов.
- •Способы получения и технологические свойства порошков (насыпная масса, текучесть, пресуемость, спекаемость)
- •Изделия, получаемые из порошковых материалов.
- •Приготовление смесей и формообразование заготовок. (холодное прессование, изостатическое, прокатка).
- •Спекание и окончательная обработка заготовок из порошковых композиционных материалов.
- •Изделия из композиционных порошковых материалов.
- •Классификация полимеров. (Полимеризация, поликонденсация, химическая модификация).
- •Получение изделий из полимерных материалов. Прямое прессование, экструзия.
- •Изготовление резиновых технических изделий.
- •Сварка и свариваемость металлов.
- •Термическая сварка (дуга, характеристика дуги).
- •Источники сварочного тока (трансформатор, выпрямитель). Совместная характеристика источника и дуги.
- •Взаимодействие сварочной ванны с окружающей средой. Растворимость газов. (Защита флюсом, газом).
- •Ручная дуговая сварка. Электроды: типы, состав, назначение. Покрытия электродов.
- •Плазменная струя и плазменная дуга. Схема, работа и применение.
- •Аргонно-дуговая сварка неплавящимися и плавящимися электродом. Схема, особенности, применение.
- •Лазерная сварка. Схема, процесс, применение.
- •Лазерная резка, газолазерная резка.
Лазерная резка, газолазерная резка.
Большое распространение получает лазерная резка, которая обеспечивает малую зону нагрева (0,1 ... 0,2 мм), незначительные ширину реза (0,2 ... 0,8 мм), шероховатость (Rz = 20 ... 35 мкм) и практически неокисленные кромки.
По сравнению с механическими методами лазерное разделение обеспечивает высокую производительность, причем не происходит изнашивание инструмента. По сравнению с физико-химическим разделением (ацетилено-кислородная, плазменная резки) применение лазерного излучения обеспечивает более высокие точность и чистоту реза, т.е. исключает необходимость дополнительной механической обработки.
Лазерные способы разделения материалов можно разделить на три группы: резку, термораскалывание и скрайбирование.
При нагреве некоторых хрупких материалов (керамика, ситалл, стекло и др.) лазерным излучением в их объеме возникают значительные напряжения, обусловленные наличием высокого температурного градиента. При превышении этими напряжениями предела прочности в материале возникают трещины, которые при перемещении лазерного луча по поверхности материала следуют за ним с некоторым запаздыванием. Происходит процесс разделения, называемый термораскалыванием.
Процесс скрайбирования занимает промежуточное положение между резкой и термораскалыванием. Его применяют для разделения полупроводниковых, керамических и ситалловых подложек на отдельные элементы. Он заключается в нанесении лазерным излучением на поверхность материала дорожек или трещин глубиной 25 ... 350 мкм и последующем разламывании материала механическим воздействием.
Лазерная резка материалов может быть основана на различных процессах, а именно: испарении материала, плавлении с удалением расплава из зоны обработки - и на химических реакциях, например, горении или термодеструкции.
При лазерной резке в режиме испарения материал нагревается до температуры кипения, а его удаление происходит под давлением, возникающим в парокапельной фазе. Его осуществляют в основном с помощью твердотельных импульсных лазеров, при разделении труднообрабатываемых материалов, таких как алюминий, керамика, композитные материалы.
Резку в режиме плавления материала и удаления расплава осуществляют с использованием вспомогательного газа (в основном кислорода) и называют газолазерной резкой (ГЛР). Применение в качестве вспомогательного газа кислорода позволяет решить несколько задач.
- снижение отражательной способности поверхности.
- способствует выделению дополнительной тепловой энергии, что приводит к возможности применения менее мощных лазеров и, соответственно, к снижению стоимости обработки.
- газовая струя просто удаляет расплав из зоны резки.
Для ГЛР используют как непрерывные, так и импульсно-периодические лазеры. В зависимости от физических свойств материалов и скорости обработки требуемые плотности мощности излучения в зоне лазерного воздействия составляют 103 ... 105 Вт/см2 для неметаллов и 107... 108 Вт/см2 для металлов.
Для обработки металлов чаще всего применяют твердотельные лазеры, так как их излучение лучше поглощается металлическими поверхностями. Для обработки неметаллических материалов, например изготовления декоративных деревянных изделий (мебель, паркет и т.п.), раскроя пачек ткани, бумаги, картона, листовой резины, пластиков, асбоцемента и др. чаще всего применяют СO2-лазеры.
С помощью лазерной резки металлов изготовляют мозаичные и декоративные панно (облицовка мебели), детали турбин (промежуточные кольца, диафрагмы), трубопроводы двигателей внутреннего сгорания, шаблоны и сепараторы, пуансоны и матрицы, дисковые пилы; раскраивают листовой материал в самолете-, судо- и автомобилестроении и других производствах.
Газовая сварка и термическая резка металлов.
Документ № 27
Нанесение износостойких и жаропрочных покрытий.
Документ № 28
Свариваемость металлов и сплавов.
Документ № 29
Пайка металлов и сплавов. Сущность процесса, разновидности пайки, материалы для пайки.
Документ № 30