
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •Задача №1
- •Задача №2
- •33 Эти задачи можно не включать Задача №1
- •Задача №1
Задача №1
Такси обслуживает 3 населенных пункта. Вероятности того, что на остановке будут пассажиры (не более трех), желающих доехать до каждого пункта, соответственно равны 0.9, 0.85, 0.8. Составьте закон распределения числа пассажиров на остановке и вычислите числовые характеристики этого распределения. Какова вероятность того, что пассажиров будет не более двух?
Решение
X – число пассажиров на остановке |
0 |
1 |
2 |
3 |
P(X=m) |
|
0,056 |
0,329 |
0,612 |
Задача №2
Туристическое бюро, рекламируя отдых на одном из морских курортов, утверждает, что для этого курорта характерна идеальная погода со среднегодовой температурой +20 С. Пусть случайно отобраны 35 дней в году. Какова в этом случае вероятность того, что отклонение средней температуры за отобранные дни от среднегодовой температуры не превысит по абсолютной величине 2С, если температура воздуха распределена по нормальному закону, а стандартное отклонение дневной температуры составляет 4 С?
Решение.
n=35,
.
7
Задача №1
Интегральная функция распределения F(x) непрерывной случайной величины задана следующим образом.
Найти плотность распределения этой случайной величины, вычислить числовые характеристики распределения и построить графики функции распределения и плотности распределения.
Решение.
Задача №2
Предположим, что на некотором предприятии собраны данные о числе дней, пропущенных работниками по болезни.
Число дней, пропущенных в текущем месяце |
0 |
1 |
2 |
3 |
4 |
5 |
Число работников |
10 |
17 |
25 |
28 |
30 |
27 |
Построить полигон распределения частот. Найдите среднее число пропущенных дней, стандартное отклонение, коэффициент вариации. Является ли распределение симметричным?
Решение.
Число дней, пропущенных в текущем месяце |
Число работников |
|
|
Накопл. частоты |
0 |
10 |
0 |
87,616 |
10 |
1 |
17 |
17 |
65,3072 |
27 |
2 |
25 |
50 |
23,04 |
52 |
3 |
28 |
84 |
0,0448 |
80 |
4 |
30 |
120 |
32,448 |
110 |
5 |
27 |
135 |
112,3632 |
137 |
Итого |
137 |
406 |
320,8192 |
|
8
Задача №1
Под руководством бригадира производственного участка работают 3 мужчин и 4 женщины. Бригадиру необходимо выбрать двух рабочих для специальной работы. Не желая оказывать кому-либо предпочтения, он решил выбрать двух рабочих случайно. Составьте ряд распределения числа женщин в выборке. Найдите числовые характеристики этого распределения. Какова вероятность того, что будет выбрано не более одной женщины?
Решение.
Гипергеометрический закон
X – число женщин в выборке |
0 |
1 |
2 |
P(X=m) |
0,1429 |
0,5714 |
0,2857 |