
- •1. Нестационарные по математическому ожиданию и стационарные процессы.
- •2. Понятие, предмет, задачи эконометрики.
- •3. Основные этапы развития эконометрики.
- •4. Особенности эконометрического метода.
- •5. Стохастика - детерминированный характер социально - экономических явлений.
- •7. Основные этапы моделирования связи методом корреляционно-регрессионного анализа.
- •8. Выбор объекта исследования при построении эконометрической модели.
- •9. . Выбор факторов, включаемых в систему, при построении эконометрической модели.
- •10. Сбор исходной информации при построении эконометрической модели.
- •11. Первичная статистическая обработка при построении эконометрической модели.
- •12. Построение двухмерной линейной модели корреляционно-регрессионного анализа.
- •13. Проверка значимости коэффициентов простой линейной регрессии и адекватности регрессионной модели.
- •14. Оценка существенности параметров линейной регрессии с помощью дисперсионного анализа.
- •15.Нелинейная регрессия
- •16. Множественная линейная регрессия: задача и основные предположения.
- •17. Выбор формы уравнения множественной регрессии.
- •18. Проверка значимости результатов множественной регрессии.
- •19. Метод наименьших квадратов для множественной линейной регрессии.
- •20. Геометрическая интерпретация метода наименьших квадратов.
- •21. Статистические свойства оценок параметров, теорема Гаусса - Маркова.
- •22. Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.
- •24. Использование коэффициента детерминации r2 и f-критерия для проверки статистических гипотез о параметрах регрессии.
- •25. Предпосылки метода наименьших квадратов. Гомоскедастичность дисперсии остатков. Гетероскедастичность.
- •2) Нулевая средняя величина остатков, т.Е.
- •4. Отсутствие автокорреляции остатков. Значения остатков распределены независимо друг от друга.
- •26. Обобщенный метод наименьших квадратов.
- •Сущность обобщённого мнк
- •27. Взвешенный метод наименьших квадратов.
- •28. Регрессионные модели с переменной структурой (фиктивные переменные).
- •29. Экономическая интерпретация многофакторной регрессионной модели.
- •30. Понятие мультиколлинеарности, ее значение при отборе факторов.
- •31. Расчет ошибки репрезентативности и доверительных интервалов при построении моделей.
- •32. Методы исключения тенденции во временных рядах.
- •33. Скользящая средняя и метод центрирования.
- •34. Автокорреляция. Тесты на автокорреляцию остатков (критерий Дарбина-Уотсона).
- •35. Оценивание при наличии автокорреляции остатков.
- •36. Прогнозирование в регрессионных моделях. Хуета какая то
- •37. Система линейных одновременных уравнений и ее идентификация.
- •38. Приведенная форма структурной модели.
- •39Идентификация параметров структурной и приведенной форм модели.
- •40. Оценивание параметров структурной формы модели.
- •42. Двушаговый метод оценки параметров систем одновременных уравнений.
- •43. Экономически значимые примеры систем одновременных уравнений.
- •45. Типы динамических эконометрических моделей. Модели с распределенным лагом и модели авторегрессии.
- •46. Интерпретация моделей: краткосрочный, промежуточный и долгосрочный мультипликаторы.
- •48. Метод Алмон. Метод Койка. Метод главных компонент. Метод Алмон
42. Двушаговый метод оценки параметров систем одновременных уравнений.
Двухшаговый МНК можно рассматривать как частный случай инструментальных переменных. В методе ИП было показано, что структурное уравнение функции потребления оказалось переопределенным и сразу две переменные It и Gt можно использовать для Уt,.
Подставляя
теоретические значения Yt вместо
фактических значений в структурное
уравнение функции потребления, получим
уравнение
которое
оценивается обычным МНК. При этом оценки
структурных коэффициентов будут
состоятельными.
43. Экономически значимые примеры систем одновременных уравнений.
При статистическом моделировании экономических ситуаций часто необходимо построение систем уравнений, когда одни и те же переменные в различных регрессионных уравнениях могут одновременно выступать, с одной стороны, в роли результирующих, объясняемых переменных, а с другой стороны - в роли объясняющих переменных. Такие системы уравнений принято называть системами одновременных уравнений.
В качестве иллюстрации приведем пример из экономики. Рассмотрим модель спроса и предложения. Как известно, спрос D на некоторый продукт зависит от его цены р. От этого же параметра, но с противоположным по знаку коэффициентом, зависит и предложение этого продукта. Силы рыночного механизма формируют цену таким образом, что спрос и предложение уравниваются. Нам нужно построить модель описанной ситуации. Для этого имеются данные об уровне равновесных цен и спросе (который равен предложению). Представленную ситуацию можно формализовать в виде следующей линейной модели:
(3.1)
спрос пропорционален цене с коэффициентом пропорциональности a1<0, т.е. связь отрицательная;
(3.2)
предложение пропорционально цене с коэффициентом пропорциональности а2>0, т.е. связь положительная;
(3.3)
44. Динамические эконометрические модели. Модель Клейна. Динамические эконометрические модели Динамической эконометрической моделью называется модель, которая в настоящий момент времени учитывает значения входящих в неё переменных, относящихся не только к текущему, но и к предыдущему моментам времени. В качестве примера динамических эконометрических моделей можно привести модели вида: yt=f(xt,xt–l), yt=f(xt,yt–l). |
Динамические эконометрические модели делятся на два основных типа:
Моделью авторегрессии называется динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной.
Пример модели авторегрессии:
yt=β0+β1xt+δ1yt–1+εt.
Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.
Пример модели с распределённым лагом:
yt=β0+β1xt+β2xt–1+…+βLxt–l+εt.
45. Типы динамических эконометрических моделей. Модели с распределенным лагом и модели авторегрессии.
Можно выделить два основных типа динамических эконометрических моделей:
1. модели авторегрессии и модели с распределенным лагом, в которых значения переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель.
2. модели второго типа учитывают динамическую информацию в неявном виде. В них включены переменные, характеризующие ожидаемый или желаемый уровень результата, или одного из факторов в момент времени t. Этот уровень считается неизвестным и определяется экономическими единицами с учетом информации, которой они располагают в момент (t-1).
Модели
с распределенным лагом –
это модели, содержащие не только текущие,
но и лаговые значения факторных переменных
Xt. Пример
модели:
одели,
в которых учитываются процессы,
происходящие с результативной переменной
в прошлые периоды, называют моделями
авторегрессии. Пример
модели: