Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора математика.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.58 Mб
Скачать

24. Производные и дифференциалы высших порядков Производные и дифференциалы высших порядков

Пусть производная некоторой функции f дифференцируема. Тогда производная от производной этой функции называется второй производной функции f и обозначается f". Таким образом,

f"(x) = (f'(x))'.

Если дифференцируема (n - 1)-я производная функции f, то ее n-й производной называется производная от (n - 1)-й производной функции f и обозначается f(n). Итак,

f(n)(x) = (f(n-1)(x))',   n ϵ N,   f(0)(x) = f(x).

Число n называется порядком производной.

Дифференциалом n-го порядка функции f называется дифференциал от дифференциала (n - 1)-го порядка этой же функции. Таким образом,

dnf(x) = d(dn-1f(x)),   d0f(x) = f(x),   n ϵ N.

Если x - независимая переменная, то

dx = const   и   d2x = d3x = ... = dnx = 0.

В этом случае справедлива формула

dnf(x) = f(n)(x)(dx)n.

25.Теоремы Ролля,Лагранжа и Коши.

Теорема Ролля

Пусть функция f: [ab] → R непрерывна на сегменте [ab], и имеет конечную или бесконечную производную внутри этого сегмента. Пусть, кроме того, f(a) = f(b). Тогда внутри сегмента [ab] найдется точка ξ такая, что f'(ξ) = 0.

Теорема Лагранжа

Если функция f: [ab] → R непрерывна на сегменте [ab] и имеет конечную или бесконечную производную во внутренних точках этого сегмента, то   такое, что f(b) - f(a) = f'(ξ)(b - a).

Теорема Коши

Если каждая из функций f и g непрерывна на [ab] и имеет конечную или бесконечную производную на ]ab[ и если, кроме того, производная g'(x) ≠ 0 на ]ab[, то   такое, что справедлива формула

Если дополнительно потребовать, чтобы g(a) ≠ g(b), то условие g'(x) ≠ 0 можно заменить менее жестким:

26.Правило Лопиталя Правило Лопиталя

Т еорема (правило Лопиталя). Пусть А – число, символ одностороннего предела (А=а±0) или символ бесконечности (А=±∞). Пусть функции ƒ(х) и g(х) либо обе бесконечно малые, либо обе бесконечно большие при х→А. Тогда, если существует предел

(конечный или бесконечный),

то существует и предел при этом выполняется равенство:

Доказательство:

Д оказательство теоремы дадим в случае, когда ƒ(х) и g(х) – бесконечно малые функции и А=а – число. Изменим, если это необходимо, определение функций ƒ(х) и g(х) в точке а так, чтобы значения этих функций в точке а были бы равны нулю: ƒ(х) = g(х)=0. Так как

и

т о ƒ(х) и g(х) непрерывны в точке а, и к этим функциям можно применить теорему Коши. Учитывая, что ƒ(а) = ƒ(b)=0, получим

для некоторой точки с, расположенной между точками а и х. При х→а имеем с→а и, следовательно если ƒ(х)→0 и g(х)→0 (соответственно, |ƒ(х)|→+∞, |g(х)|→+∞), когда а→А. Правило Лопиталя позволяет во многих случаях найти предел вида

или, иными словами, раскрыть неопределенность.

В ряде случаев по правилу Лопиталя удается раскрыть неопределенности вида

Д ля этого следует воспользоваться тождеством

которое приводит указанные неопределенности к виду 0•х.