
- •1.Матрицы и линейные операции над ними
- •2) , Для любого действительного числа ;
- •2.Определители
- •3.Обратная матрица.Ранг матрицы
- •5.Однородные слу
- •4.Системы линейных уравнений. Матричный способ решения слу. Формулы Крамера. Метод Гаусса
- •Описание метода
- •6.Декартова система координат. Векторы в пространстве.
- •7.Скалярное произведение векторов
- •8.Векторное проиведение векторов
- •9.Смешанное произведение векторов
- •10.Прямая на плоскости и ее способы задания
- •11.Плоскость в пространстве
- •12.Прямая в пространстве
- •13.Кривые второго порядка
- •Общее уравнение в матричном виде
- •[Править]Канонический вид
- •Невырожденные кривые
- •14.Поверхность второго порядка
- •15.Метод математической индукции
- •16.Множество действительных чисел.Понятие функции.
- •17.Понятие предела числовой последовательности
- •18.Непрерывность функции в точке
- •3 3. Непрерывность ф-ции в точке и на интервале.
- •19.Сравнение беск. Мал. Ф ф-ии,непрерывные на отрезке
- •20.Производная и ее смысл
- •22.Логарифмическое дифференцирование. Вывод производной степенной ф-ции.
- •21.Уравнение касательной и нормали к кривой.Правила диффиринцирования
- •23.Диффиринциал функции . Дифференциал функции в точке
- •24. Производные и дифференциалы высших порядков Производные и дифференциалы высших порядков
- •25.Теоремы Ролля,Лагранжа и Коши.
- •26.Правило Лопиталя Правило Лопиталя
- •27.Формула Тейлора Формула Тейлора.
- •28.Монотонность и экстремумы функции
- •29.Исследование функции и построение графика Общая схема исследования функции и построения ее графика.
- •30.Вектор-функция .Годограф.
- •31.Диффир. Длины дуги кривой. Кривизна плоской,пространственной прямой Кривизна плоской кривой
- •32.Комплексные числа и их изображения
- •33.Формула Муавра и эйлера. Извлечение корня из комплексного числа
- •34.Многочлены и их делимость.Теорема Безу.Основная теорема алгебры. Разложение многочлена на множители.Условие тождественности двух многочленов.Признак кратности корня многочлена и функции
- •Разложение многочлена на множители
- •35.Рациональные функции.Разложение на сумму простейших дробей.Методы нахождения коэфф. Разложения
- •1.Матрицы и линейные операции над ними
Невырожденные кривые
Кривая
второго порядка называется невырожденной,
если
Кривая второго порядка называется вырожденной, если Δ = 0
14.Поверхность второго порядка
Поверхность второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида
a11x2 + a22y2 + a33z2 + 2a12xy + 2a23yz + 2a13xz + 2a14x + 2a24y + 2a34z + a44 = 0
в котором по крайней мере один из коэффициентов a11, a22, a33, a12, a23, a13 отличен от нуля.
15.Метод математической индукции
Математическая индукция — в математике — один из методовдоказательства. Используется, чтобы доказать истинность некоего утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
,
где
— биномиальные
коэффициенты, n —
неотрицательное целое
число.
В таком виде эта формула была известна ещё индийским и исламским математикам; Ньютон вывел формулу бинома для более общего случая, когда показатель степени — произвольное рациональное число (возможно, отрицательное). В этом случае бином представляет собой бесконечный ряд
16.Множество действительных чисел.Понятие функции.
Функции. Определение способа задания. Классификация функций. Основные элементарные функции.
Функция - это зависимость одной величины от другой.
Если существует взаимооднозначное соответствие между переменной х одного множества и переменной у другого множества, то она называется функциональной зависимостью. y=f(x).
Определение способа задания:
-аналитически (y=kx+b)
-графический (график)
-таблично
x |
1 |
2 |
3 |
y |
4 |
5 |
8 |
-алгоритмически (с помощью ЭВМ)
Классификация функций:
Элементарные: - функции, которые получаются из основных элементарных ф-ций с помощью алгебраических действий (+,-,*,/,введение в степень). Основные элементарные ф-ции:
1. y=xn - степенная
2. y=ax - показательная
3. y=logax - логарифмическая
4. y=sinx, y=cosx - тригонометрические.
Сложные:
Y=f(U), где U=(x), Y=f[(x)]
Если ф-ция у зависит от промежуточного аргумента U, который зависит от независимой переменной х, то y=f[(x)] называется сложным заданием х.