Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора математика.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.58 Mб
Скачать

34.Многочлены и их делимость.Теорема Безу.Основная теорема алгебры. Разложение многочлена на множители.Условие тождественности двух многочленов.Признак кратности корня многочлена и функции

Делимость многочлена

Многочлен, который можно представить в виде произведения многочленов низших степеней с коэффициентами из данного поля, называется приводимым (над данным полем), в противном случае — неприводимым. Неприводимые многочлены играют в кольце многочленов роль, сходную с ролью простых чисел в кольце целых чисел. Например, верна теорема: если произведение pq делится на неприводимый многочлен λ, то p или q делится на λ. Каждый многочлен, степени большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени).

Например, многочлен x4 − 2, неприводимый в поле рациональных чисел, разлагается на три множителя в поле вещественных чисел и на четыре множителя в поле комплексных чисел.

Вообще, каждый многочлен от одного переменного x разлагается в поле вещественных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры).

Для двух и большего числа переменных этого уже нельзя утверждать. Над любым полем для любого n > 2 существуют многочлен отn переменных, неприводимые в любом расширении этого поля. Такие многочлены называются абсолютно неприводимыми

Теорема Безу утверждает что остаток от деления многочлена P(x) на двучлен x − a равен P(a).

Предполагается, что коэффициенты многочлена содержатся в некотором коммутативном кольце с единицей (например, в полевещественных или комплексных чисел).

Основна́я теоре́ма а́лгебры утверждает, что

Всякий отличный от константы многочлен с комплексными коэффициентами имеет по крайней мере один корень вполе комплексных чисел.

Разложение многочлена на множители

1.Вынесение множителя за скобку. Из распределительного закона непосредственно следует, что ac  +  bc  =  c ( a +  b ). Этим можно воспользоваться для вынесения множителя за скобки.

2. Использование формул сокращённого умножения. Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.

3. Способ группировки

35.Рациональные функции.Разложение на сумму простейших дробей.Методы нахождения коэфф. Разложения

Рациональная функция — это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид

где   ,    — многочлены от любого числа переменных.

Частным случаем являются рациональные функции одного переменного:

, где P(x) и Q(x) — многочлены.

свойства

  • Любое выражение, которое можно получить из переменных   с помощью четырёх арифметических действий, является рациональной функцией.

  • Множество рациональных функций замкнуто относительно арифметических действий и операции композиции.

  • Любая рациональная функция может быть представлена в виде суммы простейших дробей (см. Метод неопределённых коэффициентов), это применяется при аналитическом интегрировании.

Простейшими рациональными дробями являются рациональные дроби:

1) 

2) 

3) 

Выделяем полный квадрат и делаем замену переменной:

Тогда интеграл примет вид:

Делаем обратную замену переменной и получаем окончательный ответ.

Разложение правильной рациональной дроби на сумму простейших дробей.