
- •1.Матрицы и линейные операции над ними
- •2) , Для любого действительного числа ;
- •2.Определители
- •3.Обратная матрица.Ранг матрицы
- •5.Однородные слу
- •4.Системы линейных уравнений. Матричный способ решения слу. Формулы Крамера. Метод Гаусса
- •Описание метода
- •6.Декартова система координат. Векторы в пространстве.
- •7.Скалярное произведение векторов
- •8.Векторное проиведение векторов
- •9.Смешанное произведение векторов
- •10.Прямая на плоскости и ее способы задания
- •11.Плоскость в пространстве
- •12.Прямая в пространстве
- •13.Кривые второго порядка
- •Общее уравнение в матричном виде
- •[Править]Канонический вид
- •Невырожденные кривые
- •14.Поверхность второго порядка
- •15.Метод математической индукции
- •16.Множество действительных чисел.Понятие функции.
- •17.Понятие предела числовой последовательности
- •18.Непрерывность функции в точке
- •3 3. Непрерывность ф-ции в точке и на интервале.
- •19.Сравнение беск. Мал. Ф ф-ии,непрерывные на отрезке
- •20.Производная и ее смысл
- •22.Логарифмическое дифференцирование. Вывод производной степенной ф-ции.
- •21.Уравнение касательной и нормали к кривой.Правила диффиринцирования
- •23.Диффиринциал функции . Дифференциал функции в точке
- •24. Производные и дифференциалы высших порядков Производные и дифференциалы высших порядков
- •25.Теоремы Ролля,Лагранжа и Коши.
- •26.Правило Лопиталя Правило Лопиталя
- •27.Формула Тейлора Формула Тейлора.
- •28.Монотонность и экстремумы функции
- •29.Исследование функции и построение графика Общая схема исследования функции и построения ее графика.
- •30.Вектор-функция .Годограф.
- •31.Диффир. Длины дуги кривой. Кривизна плоской,пространственной прямой Кривизна плоской кривой
- •32.Комплексные числа и их изображения
- •33.Формула Муавра и эйлера. Извлечение корня из комплексного числа
- •34.Многочлены и их делимость.Теорема Безу.Основная теорема алгебры. Разложение многочлена на множители.Условие тождественности двух многочленов.Признак кратности корня многочлена и функции
- •Разложение многочлена на множители
- •35.Рациональные функции.Разложение на сумму простейших дробей.Методы нахождения коэфф. Разложения
- •1.Матрицы и линейные операции над ними
29.Исследование функции и построение графика Общая схема исследования функции и построения ее графика.
1.Область определения функции, поведение функции на границе области определения. Асимптоты. Точки пересечения с осями.
(Справка: для нахождения асимптот рассматриваем односторонние пределы (вертикальная асимптота), и пределы при х→∞ для выражений f(x)/х (предел равен к) и f(x)-кх (b) (наклонная асимптота у=кх+b). Подробнее вопр.1.3.
2.Четность, нечетность. Периодичность.
(справка: четная f(-x)=f(x); нечетная f(-x)=-f(x). Периодичность f(x+Т)=f(x)=f(x-Т))
3.Монотонность и экстремумы. (Функции, убывающие или возрастающие на некотором числовом промежутке, называются монотонными. Находим производную, критические точки. промежутки возрастания и убывания, точки максимума и минимума).
4.Выпуклость, вогнутость, точки перегиба. (Для этого находим вторую производную, точки перегиба, распределяем знаки второй производной: -вогнутая, +выпуклая)
5.График функции с обозначением всех найденных точек и асимптот.
30.Вектор-функция .Годограф.
Вектор-функция — функция,
значениями которой являются векторы в векторном
пространстве
двух,
трёх или более измерений. Аргументами
функции могут быть:
одна скалярная переменная — тогда значения вектор-функции определяют в некоторую кривую;
m скалярных переменных — тогда значения вектор-функции образуют в , вообще говоря, m-мерную поверхность;
векторная переменная — в этом случае вектор-функцию обычно рассматривают как векторное поле на
Для
наглядности далее ограничимся случаем
трёхмерного пространства, хотя
распространение на общий случай не
составляет труда. Вектор-функция одной
скалярной переменной
отображает
некоторый интервал вещественных
чисел
в
множество пространственных векторов
(интервал может также быть бесконечным).
Выбрав
координатные орты
,
мы можем разложить вектор-функцию на
три координатные
функции x(t), y(t), z(t):
Рассматриваемые как радиус-векторы, значения вектор-функции образуют в пространстве некоторую кривую, для которой t является параметром.
Говорят,
что вектор-функция
имеет
предел
в
точке t = t0,
если
(здесь
и далее
обозначаютмодуль
вектора
).
Предел вектор-функции имеет обычные
свойства:
Предел суммы вектор-функций равен сумме пределов слагаемых (в предположении, что они существуют).
Предел скалярного произведения вектор-функций равен скалярному произведению пределов сомножителей.
Предел векторного произведения вектор-функций равен векторному произведению пределов сомножителей.
Непрерывность вектор-функции определяется традиционно
Годограф (от др.-греч. ὁδός — путь, движение, направление и γράφω — пишу) в механике — кривая, представляющая собой геометрическое место концов переменного (изменяющегося со временем) вектора, значения которого в разные моменты времени отложены от общего начала О (см. рис.).
Понятие годографа было введено английским учёным У. Гамильтоном.
Годограф даёт наглядное геометрическое представление о том, как изменяется со временем физическая величина, изображаемая переменным вектором, и о скорости этого изменения, имеющей направление касательной к годографу. Например, скорость точки является величиной, изображаемой переменным вектором v. Отложив значения, которые имеет вектор v в разные моменты времени, от начала О, получим годограф скорости; при этом величина, характеризующая быстроту изменения скорости в точке М, то есть ускорение (в этой точке), имеет для любого момента времени направление касательной к годографу скорости в соответствующей его точке М’.