- •Предмет, цель и задачи дисциплины го
- •Требования Государственного образовательного стандарта
- •Пожароопасные свойства веществ и материалов, кинетическое и диффузионное горение.
- •Опасные факторы пожара.
- •Классификация и причины пожаров.
- •Классификация материалов и конструкций по возгораемости
- •Классификация зданий – по огнестойкости, противопожарные разрывы и преграды
- •Классификация помещений – по взрывной, взрывопожарной и пожарной опасности
- •Пожарная безопасность при проектировании, строительстве, эксплуатации и реконструкции зданий и сооружений, технологических процессов
- •Молниезащита зданий и сооружений, методы защиты, молниеотводы, расчет молниезащиты
- •Пожарная сигнализация и связь, противопожарное водоснабжение
- •Средства тушения пожаров
- •Системы автоматической сигнализации о пожаре, автоматического пожаротушения
- •Эвакуация людей и материальных ценностей
- •Организация пожарной охраны
- •Государственный пожарный надзор
- •Определение категории пожаровзрывоопасности помещения
- •Взрывоопасность пара, газа, пыли, устройство электрического оборудования, предупреждение взрывов
- •Этапы и сущность развития теории защиты населения и территории от чс
- •20. Организация го в фрг, Франции, Великобритании, сша и др.
- •Международное сотрудничество в области защиты населения и территории в чс
- •Организация го, нормативные документы, определение, принципы организации, задачи.
- •Организационная структура го (центральные, региональные, территориальные, местные, объектовые органы), руководство го.
- •Го объекта, создание пчк, их задачи, этапы работы
- •Гражданские организации го, силы и средства го объекта
- •Материально-техническое и финансовое обеспечение го.
- •Особенности осуществления мероприятий го в учебном заведении
- •28. Силы и средства наблюдения и контроля
- •29. Силы и средства ликвидации чс
- •30. Сущность и задачи управления го, требования, предъявляемые к управлению
- •31. Пункты управления, их назначение, размещение и оборудование
- •32. Прогнозирование масштабов заражения при ядерных взрывах и авариях на радиационно опасных объектах.
- •33. Прогнозирование масштабов заражения при авариях на химически опасных объектах.
- •34. Источники, виды и область применения ионизирующего излучения.
- •35. Характеристика, параметры, единицы измерения ионизирующего излучения
- •36. Биологическое действие ионизирующего излучения на организм.
- •37. Естественное и антропогенное ионизирующее излучение.
- •38. Внешнее и внутреннее облучение
- •39. Нормирование ионизирующего излучения
- •40. Дозы облучения: экспозиционная, поглощенная, эффективная, эквивалентная.
- •41. Защита экранированием, расстоянием, временем, сиз.
37. Естественное и антропогенное ионизирующее излучение.
При изучении содержания естественных радионуклидов отмечено, что их активность может различаться в сотни раз, при этом содержание естественных радионуклидов снижается в почвах с грубой структурой, а отношение U238/Th232/K40 для почвы при природном распределении соответствует 1: 0,45: 26. Вероятно, с этим связана и различная радио чувствительность живых организмов, и, в первую очередь, растений, чей генотип был сформирован в определенных экологических условиях. более половины естественной эквивалентной дозы дают уран-238 и радий-226. второе место занимает торий-232 и его продукты его распада, среди других элементов значительную роль играет радиоактивный калий.Нужно отметить и антропогенное изменение концентраций естественных радионуклидов. Поступление урана и тория в растительный покров связывается главным образом с функционированием предприятий по добыче и переработке некоторых видов минерального сырья и ископаемого топлива и применением фосфорных удобрений. Считается, что применение минеральных удобрений с повышенным содержанием тяжелых естественных радионуклидов сопровождается их введением во внешнюю среду, что может привести к увеличению природного радиационного фона. Если для U238 и Th232 основная часть их потоков в биосфере контролируема, то многочисленные продукты распада этих радионуклидов зачастую не учитываются. В то же время известен тот факт, что в случае выщелачивания из пород и продуктов их разрушения в раствор переходят преимущественно дочерние изотопы урана и тория. При этом различие в формах нахождения изотопов одного и того же элемента может привести к .нарушению изотопного равновесия в пользу дочерних изотопов при миграции урана и тория в звене “почва - растение”.В связи с этим возникает необходимость учета комплекса изотопов тяжелых радионуклидов и продуктов их распада Подтверждением вышесказанному служит вариабельность содержания радона - 222 в почве и грунтовых водах, при этом отмечается, что наряду с местными изменениями активности, средняя величина в геологическом регионе постоянна и зависит от концентрации предшественников. В некоторых случаях, возможно накопление активного газообразного продукта в концентрациях, достигающих предельно допустимых уровней и превышающих их при антропогенном загрязнении окружающей среды урана, эта опасность возрастает, особенно при выделении радона в пресноводные экосистемы и накоплении радиоактивного продукта в трофических цепях. Значимость радионуклида техногенного происхождения для окружающей среды зависит, в первую очередь, от периода полураспада, его качества и активности. По скорости распада радионуклиды можно разбить на три группы: с коротким периодом полураспада - от долей секунды, до нескольких лет; со средним периодом полураспада - до нескольких десятков лет, и, наконец, долгоживущие - тысяча и более лет. Качество определяется типом распада и энергетической характеристикой продуктов распада, при этом необходимо учитывать как конечные, так и промежуточные продукты. Активность нуклида определяется количеством распадов в единицу времени, снижаясь с течением времени. Во время аварии или ядерного взрыва наибольшую опасность представляют короткоживущие нуклиды с высокой скоростью распада и высокой активностью, затем возрастает роль элементов с большим периодом полураспада, и, наконец, долгоживущих радионуклидов. Антропогенные радионуклиды поступают во внешнюю среду не только во время ядерных взрывов и аварий, но и благодаря добыче и переработке полезных ископаемых, сжиганию угля и использованию удобрений.При учете действия радионуклидов техногенного происхождения, недостаточно учитывают различие в частотных характеристиках продуктов распада, что приводит к различному способу радиационного воздействия на живой организм. В связи с этим недостаточен учет только лишь изменения дозовой нагрузки в результате воздействия техногенных нуклидов, но необходим учет различия в физических характеристиках воздействующих частиц. При этом если активность естественных радионуклидов величина практически постоянная во времени для данного региона, то активность антропогенных нуклидов непостоянна во времени и пространстве и в значительной степени изменяется в течение жизни одного - двух поколений большинства животных и растений, что не позволяет выработать адекватную эволюционную защиту от воздействия этих факторов.
