
- •Предмет, цель и задачи дисциплины го
- •Требования Государственного образовательного стандарта
- •Пожароопасные свойства веществ и материалов, кинетическое и диффузионное горение.
- •Опасные факторы пожара.
- •Классификация и причины пожаров.
- •Классификация материалов и конструкций по возгораемости
- •Классификация зданий – по огнестойкости, противопожарные разрывы и преграды
- •Классификация помещений – по взрывной, взрывопожарной и пожарной опасности
- •Пожарная безопасность при проектировании, строительстве, эксплуатации и реконструкции зданий и сооружений, технологических процессов
- •Молниезащита зданий и сооружений, методы защиты, молниеотводы, расчет молниезащиты
- •Пожарная сигнализация и связь, противопожарное водоснабжение
- •Средства тушения пожаров
- •Системы автоматической сигнализации о пожаре, автоматического пожаротушения
- •Эвакуация людей и материальных ценностей
- •Организация пожарной охраны
- •Государственный пожарный надзор
- •Определение категории пожаровзрывоопасности помещения
- •Взрывоопасность пара, газа, пыли, устройство электрического оборудования, предупреждение взрывов
- •Этапы и сущность развития теории защиты населения и территории от чс
- •20. Организация го в фрг, Франции, Великобритании, сша и др.
- •Международное сотрудничество в области защиты населения и территории в чс
- •Организация го, нормативные документы, определение, принципы организации, задачи.
- •Организационная структура го (центральные, региональные, территориальные, местные, объектовые органы), руководство го.
- •Го объекта, создание пчк, их задачи, этапы работы
- •Гражданские организации го, силы и средства го объекта
- •Материально-техническое и финансовое обеспечение го.
- •Особенности осуществления мероприятий го в учебном заведении
- •28. Силы и средства наблюдения и контроля
- •29. Силы и средства ликвидации чс
- •30. Сущность и задачи управления го, требования, предъявляемые к управлению
- •31. Пункты управления, их назначение, размещение и оборудование
- •32. Прогнозирование масштабов заражения при ядерных взрывах и авариях на радиационно опасных объектах.
- •33. Прогнозирование масштабов заражения при авариях на химически опасных объектах.
- •34. Источники, виды и область применения ионизирующего излучения.
- •35. Характеристика, параметры, единицы измерения ионизирующего излучения
- •36. Биологическое действие ионизирующего излучения на организм.
- •37. Естественное и антропогенное ионизирующее излучение.
- •38. Внешнее и внутреннее облучение
- •39. Нормирование ионизирующего излучения
- •40. Дозы облучения: экспозиционная, поглощенная, эффективная, эквивалентная.
- •41. Защита экранированием, расстоянием, временем, сиз.
Предмет, цель и задачи дисциплины го
Цель дисциплины:
ГО – система мероприятий по подготовке к защите населения территории объектов, материальных ценностей ЧС.
ЦЕЛЬ: преподавания дисциплины; изучение основ предупреждения возникновения и развития ЧС; повышение устойчивости работы объектов проведения спасательных и других неотложных работ; снижение потери и ущерба ЧС; защита населения и территории.
Задачи дисциплины:
- изучение нормативных документов; прогнозирование и оценка социально экономических последствий ЧС; изучение научно технических и международных программ от ЧС; подготовка к действиям ЧС; подготовка и реализация плана ГО; разработка способов повышения устойчивости работы объектов планирования и осуществления эвакуации; ознакомление с основными аварийно спасательных и других работ; освоение методов проведения занятий ГО; представление о единстве, эффективности профилактической деятельности требование безопасности и защищаемости человека.
Требования Государственного образовательного стандарта
Виды профилактической деятельности: преподавание; воспитание; социально психологическое; научно методическая; управленческая; научная.
Специалист должен знать права и обязанности граждан по обеспечению БЖД владеть проффесиональным языком предмета. Владеть навыками оказания первой медпомощи. Знать теорию обеспечения БЖД, характеристики природных и техногенных источников опасности, знать государственную политику в области БЖД. Структуру государственных органов , заниматься с вопросами безопасности ЧС. Знать принципы, правила, средства обеспеченности БЖД. Уметь оценивать возможности риска ЧС.
Пожароопасные свойства веществ и материалов, кинетическое и диффузионное горение.
Пожарная опасность различных горючих веществ и материалов зависит от их агрегатного состояния, физико-химических свойств, конкретных условий хранения и применения. Пожароопасные свойства материалов и веществ можно характеризовать склонностью к возгоранию, особенностью и характером горения, свойством поддаваться тушению теми или иными средствами и способами пожаротушения. Под склонностью к возгоранию понимают способность материала самовозгораться, воспламеняться или тлеть от различных причин.
Все строительные материалы и конструкции по возгораемости делятся на сгораемые, трудносгораемые и несгораемые.
Сгораемыми называются материалы и конструкции из органических веществ, которые под действием огня или высокой температуры воспламеняются и продолжают гореть или тлеть при удалении источника огня.
Трудносгораемыми материалами и конструкциями считаются такие, которые выполнены из сочетания сгораемых и несгораемых материалов (фибролит; асфальтовый бетон; войлок, вымоченный в глиняном растворе; дерево, подвергнутое глубокой огнезащитной пропитке).Эти материалы при воздействии огня или высокой температуры с трудом воспламеняются, тлеют или обугливаются и продолжают гореть или тлеть только при наличии источника огня; после удаления источника огня их горение или тление прекращается. К несгораемым относят материалы и конструкции из неорганических материалов, которые под действием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются.
Большинство сгораемых жидкостей более пожароопасны, чем твердые горючие материалы и вещества, так как они легче воспламеняются, интенсивнее горят, образуют взрывчатые паровоздушные смеси и плохо поддаются тушению водой.
Сгораемые жидкости делятся на легковоспламеняющиеся с температурой вспышки до 45° и горючие с температурой вспышки выше 45° С. Низкую температуру вспышки имеют бензин А-74 (— 36° С), ацетон (—20° С), высокую — глицерин (158° С), льняное масло (300° С). Горение в cмесях горючих газов, паров или пылей с воздухом способно распространяться не при любом соотношении компонентов, а лишь в определенных пределах состава, называемых концентрационными пределами воспламенения (взрыва). Минимальная и максимальная концентрация горючих газов, паров или пылей в воздухе, способные воспламеняться, называются нижним и верхним концентрационными пределами воспламенения (взрыва).
Все смеси, концентрации которых находятся между пределами воспламенения, т. е. в области воспламенения, способны распространять горение и называются взрывоопасными. Смеси же, концентрации которых находятся ниже низшего и выше верхнего пределов воспламенения, в замкнутых объемах гореть неспособны и являются безопасными. Однако необходимо иметь в виду, что. смеси, концентрации которых находятся выше верхнего предела воспламенения, при выходе из замкнутого объема в воздух способны гореть диффузионным пламенем, т. е. ведут себя как пары пыли и газы, не смешанные с воздухом.
Концентрационные пределы воспламенения (взрыва) некоторых паров и газов следующие: бензин — 0,76— 5,4%; ацетон — 2,55—12,8%; ацетилен — 2,5—80%; водород—4,0—74,2%.
Концентрационные пределы воспламенения не постоянны и изменяются от ряда факторов. Наибольшее влияние на изменение пределов воспламенения оказывают мощность источника воспламенения, примесь инертных газов и паров, температура и давление горючей смеси.
По степени подготовки горючей смеси различают диффузионное и кинетическое горение.
Рассмотренные виды горения (кроме взрывчатки) относятся к диффузионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и кислородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой воспламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет.
Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продуктов пиролиза. Пиролиз – это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, сухая перегонка дерева). Поэтому сгорание твердого горючего вещества в продукт горения не сосредоточено только в зоне пламени, а имеет многостадийный характер. Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызывая ее газификацию и процесс повторяется, таким образом поддерживая горение.
Модель горения твердого вещества предполагает наличие следующих фаз: - прогрева твердой фазы. У плавящихся веществ в этой зоне происходит плавление. Толщина зоны зависит от температуры проводности вещества; - пиролиза, или реакционной зоны в твердой фазе, в которой образуются газообразные горючие вещества; - предпламенной в газовой фазе, в которой образуется смесь с окислителем; - пламени, или реакционной зоны в газовой фазе, в которой превращение продуктов пиролиза в газообразные продукты горения; - продуктов горения.
Скорость подачи кислорода в зону горения зависит от его диффузии через продукт горения. В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реагирующих компонентов и поверхности пламени путем молекулярной или кинетической диффузии, этот вид горения и называют диффузионным.
Структура пламени диффузионного горения состоит из трех зон:
В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 5000С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения. Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и происходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода): CnHm + O2 → CO + CO2 + Н2О; 2CO = CO + C. В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени: 2CO+O2=2CO2; C+O2=CO2.
Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа.
Все виды диффузионного горения присущи пожарам.
Кинетическим горением называется горение заранее перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопроводности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам.
В данном случае при поджигании горючей смеси в какой либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким образом, пламя при кинетическом горении чаще всего нестационарное.
Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени. Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом. По степени сгорания, т.е. полноты протекания реакции горения до конечных продуктов, горение бывает полным и неполным.
Так в зоне 2 горение неполное, т.к. недостаточно поступает кислород, который частично расходуется в 3 зоне, и образуются промежуточные продукты. Последние догорают в 3 зоне, где кислорода больше, до полного сгорания. Наличие сажи в дыму говорит о неполном горении.
Другой пример: при недостатке кислорода углерод сгорает до угарного газа: 2C+O2=2СО.
Если добавить O, то реакция идет до конца: 2СО+O2=2СО2.
Скорость горения зависит от характера движения газов. Поэтому различают ламинарное и турбулентное горение. Так, примером ламинарного горения может служить пламя свечи в неподвижном воздухе. При ламинарном горении слои газов текут параллельно, не завихряясь.
Турбулентное горение – вихревое движение газов, при котором интенсивно перемешиваются сгорающие газы, и фронт пламени размывается. Границей между этими видами служит критерий Рейнольдса, который характеризует соотношение между силами инерции и силами трения в потоке:
,
где: u скорость газового потока; n кинетическая вязкость; l – характерный линейный размер.
Число Рейнольдса, при котором происходит переход ламинарного пограничного слоя в турбулентный называется критическим Reкр, Reкр ~ 2320.
Турбулентность увеличивает скорость горения изза более интенсивной передачи тепла от продуктов горения в свежую смесь.