
- •Оглавление
- •2.10.1. Вопросы для самостоятельной подготовки 58
- •3.5.1. Вопросы для самостоятельной подготовки 73
- •4.1. Основные понятия и определения 76
- •Предисловие
- •Введение. Предмет, значение, Основные разделы и методы физической химии
- •Глава 1. Первый закон термодинамики. Термохимия
- •1.1. Основные понятия и определения
- •1.2. Внутренняя энергия, теплота и работа. Первый закон термодинамики
- •1.3. Применение первого закона термодинамики к различным процессам. Закон Гесса
- •1.4. Термохимия
- •1.5. Термическая устойчивость соединений
- •1.6. Теплоемкость
- •1.7. Влияние температуры на тепловые эффекты различных процессов. Закон Кирхгофа
- •1.8. Контрольные вопросы, задания и тесты
- •1.8.1. Вопросы для самостоятельной подготовки
- •1.8.2. Задачи для самостоятельного решения
- •1.8.3. Тестовые задания для самоконтроля
- •Глава 2. Второй и третий законы термодинамики. Термодинамические потенциалы
- •2.1. Основные термодинамические понятия
- •2.2. Второй закон термодинамики
- •2.3. Энтропия как критерий самопроизвольности процесса и равновесия в изолированной системе. Изменение энтропии в различных процессах
- •2.4. Третий закон термодинамики. Постулат Планка
- •2.5. Влияние давления на энтропию. Гипотеза Капустинского о состоянии вещества в глубинных зонах Земли
- •2.6. Термодинамические потенциалы
- •2.7. Свободная энергия Гиббса и закономерности появления самородных элементов
- •2.8. Характеристические функции. Уравнения Гиббса-Гельмгольца
- •2.9. Химический потенциал. Активность
- •2.10. Контрольные вопросы, задачи и тесты
- •2.10.1. Вопросы для самостоятельной подготовки
- •2.10.2. Задачи для самостоятельного решения
- •2.10.3. Тестовые задания для самоконтроля
- •Глава 3. Химическое равновесие
- •3.1. Уравнение изотермы химической реакции. Константа химического равновесия
- •3.2. Уравнение изотермы и направление химической реакции. Принцип смещения равновесия Ле Шателье - Брауна
- •3.3. Влияние температуры на химическое равновесие. Уравнения изобары и изохоры химической реакции
- •3.4. Химическое равновесие гетерогенных химических реакций
- •3.5. Контрольные вопросы и задачи
- •3.5.1. Вопросы для самостоятельной подготовки
- •3.5.2. Задачи для самостоятельного решения
- •Глава 4. Фазовые равновесия
- •4.1. Основные понятия и определения
- •4.2. Правило фаз Гиббса
- •4.3. Понятие о физико-химическом анализе. Термический анализ
- •4.4. Однокомпонентные гетерогенные системы. Уравнение Клапейрона - Клаузиуса
- •4.5. Фазовые диаграммы однокомпонентных гетерогенных систем
- •4.5.1. Фазовая диаграмма воды
- •4.5.2. Полиморфизм
- •4.5.3. Фазовая диаграмма серы
- •4.6. Фазовые диаграммы двухкомпонентных гетерогенных систем с эвтектикой
- •4.7. Диаграммы с конгруэнтно и инконгруэнтно плавящимися химическими соединениями
- •4.8. Твердые растворы. Понятие об изоморфизме
- •4.8.1. Непрерывные твердые растворы
- •4.8.2. Ограниченные твердые растворы
- •4.9. Контрольные вопросы
- •Глава 5. Растворы
- •5.1. Общая характеристика растворов
- •5.2. Парциальные молярные величины
- •5.3. Давление насыщенного пара компонента над раствором. Законы Рауля и Генри. Растворимость газов в жидкостях
- •5.4. Диаграммы «давление - состав», «температура – состав» и законы Коновалова для реальных систем
- •5.5. Закономерности общего давления пара над смесью двух летучих жидкостей. Обоснование законов Коновалова
- •5.6. Разделение жидких бинарных летучих смесей перегонкой
- •5.7. Осмотическое давление
- •5.8. Взаимная растворимость жидкостей
- •5.9. Закон распределения Нернста. Экстракция
- •5.10. Растворимость твердых веществ в жидкостях
- •5.11. Понижение температуры замерзания и повышение температуры кипения растворов
- •5.12. Контрольные вопросы
- •Литература
4.2. Правило фаз Гиббса
Правило фаз Гиббса связывает количество фаз в системе, находящейся в равновесном состоянии или в равновесном процессе, с числом компонентов этой системы.
Рассмотрим систему, состоящую из Ф фаз и К компонентов. При равновесии температура и давление всех фаз одинаковы. Химический потенциал каждого компонента имеет одинаковое значение во всех фазах. Состав каждой фазы определяется концентрациями (К1) компонентов (т.к. концентрацию последнего компонента можно найти, учитывая, что сумма мольных долей всех компонентов равна единице). Состав Ф фаз определится Ф(К1) концентрациями. С учетом температуры и давления общее число переменных составит Ф(К1)+2. Применим известное алгебраическое правило: в системе уравнений число независимых переменных (т.е. число степеней свободы С) равно разности общего числа переменных и числа связывающих их уравнений). Общее число переменных мы нашли. Число уравнений, связывающих эти переменные, определим из условий равновесия в гетерогенных системах, а именно: из равенства химических потенциалов любого компонента в каждой из сосуществующих фаз. Запишем эти равенства для “К” компонентов, обозначая верхним индексом номер фазы, а нижним компонента:
11=12; 12=13; ... 1Ф-1=1Ф
21=22; 22=23; ... 2Ф-1=2Ф
. . . . . . . . . . . . . . . . . . . . . . . .
к1=к2; к2=к3; ... кФ-1=кФ
Очевидно, что для каждого компонента имеется (Ф1) уравнений, а для всех К компонентов К(Ф1) уравнений.
Тогда число степеней свободы
С=Ф(К1)+2 К(Ф1) или
С = КФ+2 (4.2 )
Это уравнение выражает основной закон фазового равновесия, или правило фаз Гиббса (1867 г.): число степеней свободы равновесной гетерогенной системы, на которую влияют только Т и Р, равно числу компонентов минус число фаз плюс 2.
Если на равновесие в системе кроме Т и Р влияют другие факторы (магнитные, электрические или гравитационные поля, например), то в уравнении (4.2) число внешних факторов будет не 2, а 3 или, в общем случае, n:
С = КФ+n (4.3)
Если гетерогенная система состоит только из конденсированных фаз, то давление, как правило, не влияет на состояние гетерогенного равновесия в системе в широких пределах (до тысяч атм), и число внешних параметров n=1 (температура).
Тогда правило фаз имеет вид:
С = КФ+1 (4.4)
По числу фаз, компонентов и вариантности гетерогенные системы классифицируют следующим образом: однофазные, двухфазные, трехфазные, многофазные; одно-, двух-, трех- и многокомпонентные; ин- (или нон-) вариантные (С=0), моно-, би- и поливариантные.
4.3. Понятие о физико-химическом анализе. Термический анализ
Для изучения гетерогенных систем применяют методы физико-химического анализа. В основе его лежит изучение какого-либо физического свойства системы (плотности, вязкости, электропроводности, температуры фазового перехода и др.) в зависимости от состава системы.
Найденные из опыта зависимости изображают в виде диаграмм состояния “состав-свойство”.
Диаграмма это совокупность геометрических элементов (точек, линий, плоскостей и т.д.), которые изображают связь между параметрами, определяющими состояние системы, и ее составом. Изучение диаграмм состояния позволяет определить число и состав фаз, составляющих систему при данных условиях, определить границы существования фаз. В основе анализа диаграмм лежат принципы непрерывности и соответствия. Эти принципы сформулированы основателем физико-химического анализа академиком Н.С. Курнаковым.
Принцип непрерывности: при непрерывном изменении параметров, определяющих состояние системы, свойства ее отдельных фаз изменяются непрерывно до тех пор, пока не изменится число или природа ее фаз.
Принцип соответствия: каждой фазе или совокупности фаз, находящихся в системе в равновесии, соответствует на диаграмме определенный геометрический образ (плоскость, кривая, точка).
Одним из наиболее распространенных видов физико-химического анализа является термический анализ. В основе его лежит экспериментальное изучение температур, при которых в равновесной системе происходят фазовые превращения. Эти температуры определяют по кривым охлаждения (или термограммам), t=f(). Кривые охлаждения получают экспериментально для систем с различным соотношением компонентов, фиксируя изменение температуры во времени в процессе естественного охлаждения. Процессы фазового перехода, происходящие в системе, сопровождаются тепловыми эффектами и приводят к появлению изотермических остановок или изменению угла наклона термограммы.
Построение термограмм широко применяется при изучении свойств и состава сплавов, природных и искусственных минералов. По кривым охлаждения строят диаграммы состояния (фазовые диаграммы) гетерогенных систем. Они позволяют определять области существования возможных фаз гетерогенной системы в зависимости от условий: состава системы, температуры, давления. Нами будут рассмотрены далее основные типы диаграмм состояния одно- и двухкомпонентных гетерогенных систем. В качестве примеров приведены некоторые фазовые диаграммы минералов и сплавов. Более сложные типы диаграмм многокомпонентных систем можно найти в специальной литературе. В списке литературы, приведенном в конце учебного пособия, приведено несколько таких изданий.