
- •Оглавление
- •2.10.1. Вопросы для самостоятельной подготовки 58
- •3.5.1. Вопросы для самостоятельной подготовки 73
- •4.1. Основные понятия и определения 76
- •Предисловие
- •Введение. Предмет, значение, Основные разделы и методы физической химии
- •Глава 1. Первый закон термодинамики. Термохимия
- •1.1. Основные понятия и определения
- •1.2. Внутренняя энергия, теплота и работа. Первый закон термодинамики
- •1.3. Применение первого закона термодинамики к различным процессам. Закон Гесса
- •1.4. Термохимия
- •1.5. Термическая устойчивость соединений
- •1.6. Теплоемкость
- •1.7. Влияние температуры на тепловые эффекты различных процессов. Закон Кирхгофа
- •1.8. Контрольные вопросы, задания и тесты
- •1.8.1. Вопросы для самостоятельной подготовки
- •1.8.2. Задачи для самостоятельного решения
- •1.8.3. Тестовые задания для самоконтроля
- •Глава 2. Второй и третий законы термодинамики. Термодинамические потенциалы
- •2.1. Основные термодинамические понятия
- •2.2. Второй закон термодинамики
- •2.3. Энтропия как критерий самопроизвольности процесса и равновесия в изолированной системе. Изменение энтропии в различных процессах
- •2.4. Третий закон термодинамики. Постулат Планка
- •2.5. Влияние давления на энтропию. Гипотеза Капустинского о состоянии вещества в глубинных зонах Земли
- •2.6. Термодинамические потенциалы
- •2.7. Свободная энергия Гиббса и закономерности появления самородных элементов
- •2.8. Характеристические функции. Уравнения Гиббса-Гельмгольца
- •2.9. Химический потенциал. Активность
- •2.10. Контрольные вопросы, задачи и тесты
- •2.10.1. Вопросы для самостоятельной подготовки
- •2.10.2. Задачи для самостоятельного решения
- •2.10.3. Тестовые задания для самоконтроля
- •Глава 3. Химическое равновесие
- •3.1. Уравнение изотермы химической реакции. Константа химического равновесия
- •3.2. Уравнение изотермы и направление химической реакции. Принцип смещения равновесия Ле Шателье - Брауна
- •3.3. Влияние температуры на химическое равновесие. Уравнения изобары и изохоры химической реакции
- •3.4. Химическое равновесие гетерогенных химических реакций
- •3.5. Контрольные вопросы и задачи
- •3.5.1. Вопросы для самостоятельной подготовки
- •3.5.2. Задачи для самостоятельного решения
- •Глава 4. Фазовые равновесия
- •4.1. Основные понятия и определения
- •4.2. Правило фаз Гиббса
- •4.3. Понятие о физико-химическом анализе. Термический анализ
- •4.4. Однокомпонентные гетерогенные системы. Уравнение Клапейрона - Клаузиуса
- •4.5. Фазовые диаграммы однокомпонентных гетерогенных систем
- •4.5.1. Фазовая диаграмма воды
- •4.5.2. Полиморфизм
- •4.5.3. Фазовая диаграмма серы
- •4.6. Фазовые диаграммы двухкомпонентных гетерогенных систем с эвтектикой
- •4.7. Диаграммы с конгруэнтно и инконгруэнтно плавящимися химическими соединениями
- •4.8. Твердые растворы. Понятие об изоморфизме
- •4.8.1. Непрерывные твердые растворы
- •4.8.2. Ограниченные твердые растворы
- •4.9. Контрольные вопросы
- •Глава 5. Растворы
- •5.1. Общая характеристика растворов
- •5.2. Парциальные молярные величины
- •5.3. Давление насыщенного пара компонента над раствором. Законы Рауля и Генри. Растворимость газов в жидкостях
- •5.4. Диаграммы «давление - состав», «температура – состав» и законы Коновалова для реальных систем
- •5.5. Закономерности общего давления пара над смесью двух летучих жидкостей. Обоснование законов Коновалова
- •5.6. Разделение жидких бинарных летучих смесей перегонкой
- •5.7. Осмотическое давление
- •5.8. Взаимная растворимость жидкостей
- •5.9. Закон распределения Нернста. Экстракция
- •5.10. Растворимость твердых веществ в жидкостях
- •5.11. Понижение температуры замерзания и повышение температуры кипения растворов
- •5.12. Контрольные вопросы
- •Литература
2.3. Энтропия как критерий самопроизвольности процесса и равновесия в изолированной системе. Изменение энтропии в различных процессах
В изолированной системе при протекании процесса Q = 0; U = const и V = const, т.е. не происходит теплообмена с окружающей средой, а внутренняя энергия и объем системы постоянны.
В указанных условиях выражение второго закона термодинамики (2.3.) принимает вид:
(2.5)
Поскольку энтропия является функцией состояния системы, то в интегральной форме:
S2 S1 0 или
S2 S1 (2.6)
Из выражения (2.6) следует, что в изолированной системе самопроизвольно будет протекать только такой процесс, в ходе которого энтропия системы возрастает (S2 > S1). Когда в результате процесса изолированная система придет в состояние равновесия при рассматриваемых условиях, энтропия достигнет максимума. То есть критерием равновесия в изолированной системе будет:
dS = 0 (2.7)
Если в изолированной системе протекает только обратимый (равновесный) процесс, то энтропия системы сохраняет постоянное значение.
Для неизолированных систем (открытых и закрытых) изменение энтропии S может быть больше нуля или меньше нуля, т.е. эти критерии не имеют силы. Критерием направления процесса и состояния равновесия будет изменение других функций состояния.
Энтропия это экстенсивное свойство системы, т.е. она пропорциональна массе. Общая энтропия системы равна сумме энтропий ее составных частей:
Sобщ =
=
S1+S2... (2.8)
Размерность энтропии:
или
С целью сравнения и расчетов энтропии
веществ относят к стандартному состоянию
и обозначают
(нижний индекс означает температуру,
принятую в термодинамике в качестве
стандартной, в шкале Кельвина).
Рассмотрим расчет изменения энтропии в ряде равновесных процессов.
1. Стандартное изменение энтропии в результате химической реакции.
(2.9)
где
стандартные энтропии продуктов реакции
и исходных веществ. Абсолютные значения
энтропий веществ рассчитываются в
соответствии с третьим началом
термодинамики, (см. раздел 2.4). Их значения
приводятся в справочной литературе.
2. В соответствии со вторым началом термодинамики, в любой изолированной системе изменение энтропии в изотермическом неравновесном процессе равно приведенной теплоте:
(*)
Пользуясь этим уравнением, рассчитывают изменение энтропии в процессе фазового превращения вещества (плавления, испарения, возгонки):
(2.10)
где
теплота фазового
перехода; Тф.п.
абсолютная температура фазового
перехода.
Поскольку упорядоченность расположения частиц максимальна в твердом теле, то в процессе плавления энтропия возрастает.
Еще большее возрастание энтропии наблюдается при переходе жидкости в пар.
3. Нагревание “n” моль вещества от T1 до T2.
а) изохорный процесс, V=const:
(2.11)
если CV = const в интервале T1 T2, то
(2.12)
б) аналогично получим для изобарного процесса, P= const:
(2.13)
Если мольные теплоемкости веществ Сv и Cp зависят от температуры (1.48), (1.49), то в уравнение (2.11) подставляют эти функции, решая интегралы аналогично уравнению Кирхгофа (1.63), (1.64).
В приведенных расчетах мы использовали второй закон термодинамики для обратимых (равновесных) процессов и учитывали только знак “=”.
Как же рассчитать изменение энтропии в неравновесном процессе? Так как изменение энтропии не зависит от пути и характера процесса (функция состояния системы), то
Sнеравн.=Sравн. (2.14)
и расчет Sнеравн. ведут по формулам для равновесных (обратимых) процессов, помня при этом, что приведенные теплоты обратимых и необратимых процессов отличаются, и
(2.15)
Рассмотрим пример. Найти изменение энтропии при нагревании одного моля алюминия от 298 до 873 К. Истинная молярная теплоёмкость кристаллического алюминия выражается уравнением:
СР = 20,67 + 12,39·10-3 Т, Дж/(моль·К).
Решение. В соответствии с уравнением (2.11), записанным для условий постоянства давления:
При нагревании одного моля алюминия энтропия повысится на 29,34 Дж/К.