
- •1. Виды взаимодействия
- •Третий закон Кеплера (гармонический закон)
- •3. Вынужденные колебания. Резонанс.
- •Резонанс
- •4. Жидкости. Сила поверхностного натяжения.
- •5. Кристаллические и аморфные тела.
- •6. Теплоемкость идеального газа. Политропный процесс.
- •7. Теплоемкость твердых тел. Закон Дюлонга-Пти.
- •8. Электронная теория проводимости.
- •9. Закон Ома.
- •Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.
- •11. Электрический ток в жидкостях.
- •12. Трансформаторы. Передача электрической энергии.
- •16. Дифракционная решетка
- •17. Эффект Комптона
- •18. Волновые свойства микрочастиц
- •19. Лазеры
9. Закон Ома.
Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:
где
R
= const.
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диодили газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:
IR
= U12
= φ1 – φ2 +
= Δφ12 +
.
Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи.
По закону Ома IR = Δφcd.
Участок (ab) содержит источник тока с ЭДС, равной .
По закону Ома для неоднородного участка, Ir = Δφab + .
Сложив оба равенства, получим: I (R + r) = Δφcd + Δφab + .Но Δφcd = Δφba = – Δφab.
Поэтому
Эта формула выражает закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
Сопротивление
r
неоднородного участка на рис. 1.8.2 можно
рассматривать как внутреннее
сопротивление источника тока.
В этом случае участок (ab)
на рис. 1.8.2 является внутренним участком
источника. Если точки a
и b
замкнуть проводником, сопротивление
которого мало по сравнению с внутренним
сопротивлением источника (R
<< r),
тогда в цепи потечет ток
короткого замыкания
По закону Ома IR = Δφcd.
Участок (ab) содержит источник тока с ЭДС, равной .
По закону Ома для неоднородного участка,
Ir = Δφab + .
Сложив оба равенства, получим:
I (R + r) = Δφcd + Δφab + .
Но Δφcd = Δφba = – Δφab. Поэтому
Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
10. Ток в полупроводниках.
По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.
Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.
Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам. Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.
В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов.
Если полупроводник поместить в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов:
I = In + Ip.
Концентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.