
- •Глава 1. Элементы системной инженерии безопасности
- •Глава 1. Элементы системной инженерии безопасности
- •1.1. Причины и факторы аварийности и травматизма
- •1.2. Энергоэнтропийная концепция опасностей
- •1.3. Классификация существующих опасностей
- •1.4. Категории системной инженерии безопасности
- •1.5. Принципы и методы обеспечения безопасности
- •1.6. Цель и показатели системы обеспечения безопасности
- •1.7. Особенности моделирования опасных процессов
- •Глава 2. Модели и методы прогнозирования происшествий
- •2.1. Общие принципы прогнозирования техногенного риска
- •2.2. Построение “деревьев” происшествия и его исходов
- •2.3. Качественный анализ моделей типа “дерево”
- •2.4. Количественный анализ диаграмм типа “дерево”
- •Глава 3. Модели и методы оценки техногенного ущерба
- •3.1. Принципы априорной оценки техногенного ущерба
- •3.2. Методы прогноза вероятности причинения ущерба
- •Вещества и коэффициенты удельного энерговыделения ()
- •Режимы взрывного горения топливовоздушных смесей
- •Соотношение между значениями "пробит-" и "эрфик" функций
- •Параметры пробит-функции для поражающих факторов
- •3.3. Методы прогнозирования размеров зон поражения
- •Значения базовых давлений для зданий и сооружений
- •Размеры зон фугасного поражения, м
- •Параметры поражающих тепловых факторов
- •Критические тепловые потоки и длительности прогрева
- •Индексы смертности il некоторых вредных веществ
- •3.4. Методы прогноза концентрации вредных веществ в зонах
- •Методы прогноза полученных людьми токсодоз
- •Параметры токсичности химических соединений
- •3.6. Особенности оценки ущерба людям и биоресурсам
- •Ущерб от стойкой утраты трудоспособности человека
- •Ущерб от стойкой утраты трудоспособности человека
- •Глава 4. Методика и иллюстративные примеры моделирования
- •Методика комплексного прогноза техногенного риска
- •4.2. Иллюстративные модели типа "дерево"
- •Предпосылки аварийного пролива горючего при заправке
- •Предпосылки травмирования людей подвижным составом
- •4.3. Иллюстрация качественного и количественного анализа
- •Характеристики и параметры дерева происшествий
Размеры зон фугасного поражения, м
Масса облака нефтяных газов, кг |
1000 |
10000 |
Давление ВУВ (бар) и степень повреждения в радиусе, м: |
|
|
0,3...0,1- тяжелые повреждения зданий и увечья людей |
16 |
35 |
0,1...0,03 - полное разрушение стекол и контузии людей |
54 |
117 |
0,03...0.01 - 10% разрушение остекления и ушибы людей |
163 |
352 |
Для приближенной оценки последствий таких взрывов, используется изложенный выше подход, в предположении о возможности определения их тротилового эквивалента (кг) по такой формуле [3]:
q = 0,044M/4,52, (3.12)
где ,, - доля участвующего во взрыве газа, коэффициенты его удельного энерговыделения и возможного усиления избыточного давления на фронте ВУВ (для наземного взрыва =2);
М - масса горючего газа в топливовоздушной смеси, кг.
При использовании формулы (3.12) рекомендуется следующее: а)величину принимать принадлежащей отрезку [0,1...0,5] - меньшие значения соответствуют открытым пространствам, средние -замкнутым объемам, максимальные - водородным смесям; б) коэффициент следует брать из табл. 3.1 или соответствующей справочной литературы.
Прогноз зон теплового поражения. Оценка ущерба людским, материальным и природным ресурсам от данного фактора наиболее актуальна при оценке ущерба от аварийного выброса веществ, способных в последующем выделять накопленную в них химическую энергию следующими тремя основными сценариями: а)факельное горение струи топлива, б)поверхностное его выгорание в пределах образовавшегося бассейна, в)испарение сжиженных газов с образованием ТВС, завершающееся вспышкой в форме огненного шара или взрывом типа BLEVE.
Общие принципы. Обработка многочисленных эмпирических данных свидетельствует о таком соотношении между перечисленными способами высвобождения энергии углеводородных топлив в случае их пролива[20]: в 35% случаев это завершается взрывом образовавшегося облака ТВС, в 35% - его воспламенением с образованием огненного шара, в 10% - постепенным выгоранием и в оставшихся 20% случаев - медленным испарением, без воспламенения образовавшейся ТВС.
Поражающий эффект в первых трех случаях определяется величиной теплового импульса, излучаемого очагом пожара или взрыва, и зависит от диаметра и массы огненного шара, скорости его выгорания, а также от стойкости подверженных воздействию объектов и полученной ими тепловой дозы.
В табл. 3.7 приведены данные об изменении удельного теплового потока в зависимости от удаления от центра очага пожара, вызванного горением широкой фракции легких углеводородов. В первой строке таблицы - в безветренную погоду, во второй - при ветре со скоростью 5 м/с, с подветренной стороны; в числителе - на площади с радиусом разлива в 25 м и в знаменателе - 50 м.
Таблица 3.7.