
- •Билет №1
- •Клетка – структурная и функциональная единица организмов всех царств живой природы
- •Современные представления о биологических науках. Понятия филогенеза и онтогенеза. Методы исследования в биологии.
- •Понятие о крови и основные функции крови.
- •1. Функции крови (см. Также 6.1.0. Функции крови)
- •Закон расщепления признаков во втором поколении
- •Билет №2
- •1.Палеонтологические, сравнительно-аналитические, эмбриологические доказательства эволюции органического мира
- •3.Строение и функция эритроцитов. Что такое эритроциты?
- •Функции эритроцитов
- •Строение эритроцитов
- •Билет №3
- •2.Уровни организации живого.
- •4.Взаимодействие и множественное действие генов как основа целостности генотипа
- •Билет №4
- •1.Ароморфоз – главное направление эволюции. Основные ароморфозы в эволюции позвоночных
- •2.Закономерности индивидуального развития (онтогенез). Периоды онтогенеза. Максимальная и средняя продолжительность жизни человека.
- •3.Лейкоциты, их строение и функции
- •Функции лейкоцитов
- •4.Соотношение организмов-продуцентов, консументов, редуцентов в экосистеме
- •Билет №5
- •1.Строение и жизнедеятельность клетки животного
- •2.Происхождение жизни на земле.
- •3.Гемограмма, её клиническое значение. Особенности гемограммы у детей.
- •4.Строение и функции спинного мозга
- •Билет №6
- •2.Развитие эволюционного учения.
- •3.Функционирование органных сосудов.
- •1. Функционирование органных сосудов
- •4.Естественный и искусственный отборы, их сходство и отличия, роль в возникновении многообразия органического мира
- •2.Основы систематики.
- •3.Нервные и гуморальные влияния на органные сосуды. Роль эндотелия сосудов в регуляции их просвета.
- •4.Биомасса или живое вещество биосферы. Закономерности распространения биомассы в биосфере, тенденция ее изменения под влиянием деятельности человека
- •Билет №8
- •1.Половое размножение. Строение и функции мужских и женских гамет
- •2.Основные черты эволюции живых форм.
- •3.Общая характеристика патологических процессов в системе крови.
- •4.Генные мутации. Значение мутаций.
- •Значение мутаций
- •Билет №9
- •1.Химический состав клетки. Роль органических веществ в ее строении и жизнедеятельности
- •2.Происхождение человека (антропогенез).
- •3.Расстройства кровообращения, связанные с нарушением функции сердца. Недостаточность сердца.
- •4.Основные типы тканей.
- •Билет №10
- •1.Модификационная изменчивость, ее значение в жизни организма
- •2.Взаимоотношения организма как такового с внешней средой. Взаимоотношение среды и организма
- •3.Расстройства кровообращения, связанные с нарушением функции сердца. Нарушения ритма сердца.
- •4.Представления о регенерации тканей. Билет №11
- •1.Вирусы, их строение и функционирование. Вирусы – возбудители опасных заболеваний
- •2.Организм как среда обитания
- •3.Основные функции лимфы. Количество, состав и свойства лимфы.
- •1. Лимфа
- •2. Основные функции лимфы
- •4.Представления о гипертрофии и атрофии тканей.
- •Билет №12
- •1.Обмен веществ и превращение энергии в клетке. Ферменты, их роль в реакциях обмена веществ
- •2.История развития клеточной теории
- •3.Механизм образования лимфы. Лимфообращение
- •4.Организации, перестройка и метаплазия тканей.
- •Билет №13
- •1.Идиоадаптация – направление эволюции органического мира. Значение идиоадаптации
- •2.Структурные компоненты клеток. Клеточная мембрана (плазматическая мембрана, плазмолемма). Натриево-калиевый насос.
- •3.Основные функции системы кровообращения. Функциональные классификации системы кровообращения
- •4.Строение и классификация мышц.
- •Билет №14
- •1.Общая характеристика движения крови по сосудам. Основные параметры системной гемодинамики.
- •2.Структурные компоненты клеток. Митохондрии. Свободные рибосомы и полирибосомы.
- •3.Энергетический обмен в клетках животных, его значение
- •4.Защитная функция дыхательных путей.
- •Билет №15
- •1.Пластический обмен. Биосинтез белка. Матричный характер биосинтеза
- •2.Структурные компоненты клеток. Гранулярный эндоплазматический ретикулум. Аппарат Гольджи.
- •3.Основные параметры системной гемодинамики. Системное артериальное давление.
- •4.Оболочки и выстилки сердца. Полость перикарда. Билет №16
- •1.Наследственная изменчивость, ее виды. Виды мутаций, их причины. Роль мутаций в эволюции органического мира и селекции
- •2.Структурные компоненты клеток. Лизосомы. Окаймленные пузырьки.
- •3.Основные параметры системной гемодинамики. Общее периферическое сопротивление сосудов.
- •4.Проводящая система сердца. Автоматизм и проводимость миокарда. Сопряжение возбуждения и сокращения миокарда. Билет №17
- •1.Эволюция человека. Доказательства происхождения человека от млекопитающих животных
- •2.Структурные компоненты клеток. Гладкий эндоплазматический ретикулум. Микротрубочки цитоплазмы. Реснички. Фибриллярные структуры: фибриллы и филаменты. Включения.
- •3.Основные параметры системной гемодинамики. Сердечный выброс. Общие принципы регуляции сердечного выброса.
- •4.Строение и функции нервной системы. Общие представления.
- •Билет №18
- •1.Деление клеток – основа размножения и роста организмов. Роль ядра и хромосом в деление клеток. Митоз и его значение
- •2.Структурные компоненты клеток. Компоненты интерфазного ядра.
- •3.Основные параметры системной гемодинамики. Центральное венозное давление.
- •4.Строение и функции почек
- •Строение почки
- •Билет №19
- •1.Движущие силы эволюции человека. Основные стадии эволюции человека. Биологические и социальные факторы эволюции
- •2.Общие принципы регуляции живой системы.
- •1. Физиологическая регуляция
- •3.Строение и функции полости рта, глотки и пищевода.
- •4.Механизм мочеобразования. Механизмы мочеобразования
- •Билет №20
- •1.Мейоз, его значение, отличие от митоза. Набор хромосом в гаметах и соматических клетках
- •2.Наследственность и изменчивость. Понятия гена, генотипа, фенотипа, наследования.
- •3.Строение и функции желудка. Строение и функции желудка
- •4.Механические, электрические и физические проявления деятельности сердца. Ханические, электрические и физические проявления деятельности сердца
Билет №6
1.Вид – надорганизменная система, его критерии
1. Вид — группа особей, связанных между собой общим происхождением, сходством строения и процессов жизнедеятельности. Особи вида имеют сходные приспособления к жизни в определенных условиях, скрещиваются между собой и дают плодовитое потомство. 2. Вид — реально существующая в природе единица, которая характеризуется рядом признаков — критериев, единица классификации организмов. Критерии вида: генетический, морфологический, физиологический, географический, экологический. 3. Генетический — главный критерий. Это строго определенное число, форма и размеры хромосом в клетках организма каждого вида. Генетический критерий — основа морфологических, физиологических различий особей разных видов, он определяет способность особей вида скрещиваться и давать плодовитое потомство. 4. Морфологический критерий — сходство внешнего и внутреннего строения особей вида. 5. Физиологический критерий — сходство процессов жизнедеятельности у особей вида, способность их скрещиваться и давать плодовитое потомство (у растений сходные приспособления к опылению, размножению). 6. Географический критерий — занимаемый особями вида сплошной или прерывистый ареал, большой или небольшой. Изменение ареала ряда видов под влиянием деятельности человека, например сужение ареала в связи с вырубкой лесов, осушением болот и др. 7. Экологический критерий — совокупность факторов внешней среды, определенные экологические условия, в которых существует вид. Например, некоторые виды лютиков живут в условиях высокой влажности, другие — в менее влажных местах. 8. Необходимость использования всего комплекса критериев при определении видов обусловлена изменчивостью признаков под воздействием факторов среды, возникновением хромосомных мутаций, скрещиваемостью особей разных видов, наличием совмещенных ареалов у ряда видов, видов-двойников . 9. Популяция — структурная единица вида, группа особей, обладающих наибольшим сходством и родством, длительное время обитающих на общей территории.
2.Развитие эволюционного учения.
Эволюционное учение
(биол.)
комплекс знаний об историческом развитии (эволюции) живой природы. Э. у. занимается анализом становления адаптации (приспособлений), эволюции индивидуального развития организмов (Онтогенеза), факторов, направляющих эволюцию, и конкретных путей исторического развития (Филогенеза) отдельных групп организмов и органического мира в целом. Основу Э. у. составляет эволюционная теория. К Э. у. относятся также концепции происхождения жизни (См. Происхождение жизни) и происхождения человека.
История Э. у. Первые представления о развитии жизни, содержащиеся в трудах Эмпедокла, Демокрита, Лукреция Кара и других античных философов, носили характер гениальных догадок и не были обоснованы биологическими фактами. В 18 в. в биологии сформировался Трансформизм — учение об изменяемости видов животных и растений, противопоставлявшееся Креационизму, основанному на концепции божеств. творения и неизменности видов. Виднейшие трансформисты 2-й пол. 18 и 1-й пол. 19 вв.— Ж. Бюффон и Э. Ж. Сент-Илер во Франции, Э. Дарвин в Англии, И. В. Гёте в Германии, К. Ф. Рулье в России — обосновывали изменяемость видов главным образом двумя фактами: наличием переходных форм между близкими видами и единством плана строения организмов больших групп животных и растений. Однако они не рассматривали причин и факторов изменения видов.
Первая попытка создания целостной эволюционной теории принадлежит французскому естествоиспытателю Ж. Б. Ламарку, изложившему в своей «Философии зоологии» (1809) представления о движущих силах эволюции. Согласно Ламарку, переход от низших форм жизни к высшим — Градация — происходит в результате имманентного и всеобщего стремления организмов к совершенству. Разнообразие видов на каждом уровне организации Ламарк объяснял модифицирующим градацию воздействием условий среды. Согласно первому «закону» Ламарка, упражнение органов приводит к их прогрессивному развитию, а неупражнение — к редукции; согласно второму «закону», результаты упражнения и неупражнения органов при достаточной продолжительности воздействия закрепляются в наследственности организмов и далее передаются из поколения в поколение уже вне зависимости от вызвавших их воздействий среды (см.Ламаркизм, Приобретённые признаки). «Законы» Ламарка основаны на ошибочном представлении о том, что природе свойственны стремление к совершенствованию и наследование организмами благоприобретенных свойств.
Истинные факторы эволюции вскрыл Ч. Дарвин, тем самым создав научно обоснованную эволюционную теорию (изложена в книге «Происхождение видов путём естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь», 1859). Движущими силами эволюции, по Дарвину (см. Дарвинизм), являются: неопределённая изменчивость — наследственно обусловленное разнообразие организмов каждой популяции любого вида, борьба за существование, в ходе которой гибнут или устраняются от размножения менее приспособленные организмы, и естественный отбор — переживание более приспособленных особей, в результате которого накапливаются и суммируются полезные наследственные изменения и возникают новые адаптации. Ламаркизм и дарвинизм в трактовке эволюции диаметрально противоположны: ламаркизм эволюцию объясняет адаптацией, а дарвинизм адаптацию — эволюцией. Кроме ламаркизма, существует ещё ряд концепций, отрицающих значение отбора, как движущей силы эволюции (см. Автогенез, Мутационизм, Номогенез и др.). Развитие биологии подтвердило правильность дарвиновской теории. Поэтому в современной биологии термины «дарвинизм» и «Э. у.» часто употребляются как синонимы. Близок по смыслу и термин «синтетическая теория эволюции», который подчёркивает сочетание (синтез) основные положений теории Дарвина, генетики и ряда эволюционных обобщений др. областей биологии.
Современное Э. у. Развитие генетики позволило понять механизм возникновения неопределённой наследств. изменчивости, предоставляющей материал эволюции. В основе этого явления лежат стойкие изменения наследственных структур — Мутации. Мутационная изменчивость не направлена: вновь возникающие мутации не адекватны условиям окружающей среды и, как правило, нарушают уже существующие адаптации. Для организмов, не имеющих оформленного ядра (см. Прокариоты), мутационная изменчивость служит основным материалом эволюции. Для организмов, клетки которых имеют оформленное ядро (см. Эукариоты), большое значение имеет комбинативная изменчивость — комбинирование генов в процессе полового размножения. Элементарной единицей эволюции является Популяция. Относительная обособленность популяций приводит к их репродуктивной изоляции (См. Изоляция) — ограничению свободы скрещивания особей разных популяций. Репродуктивная изоляция обеспечивает уникальность Генофонда — генетического состава каждой популяции — и тем самым возможность её самостоятельной эволюции. В процессе борьбы за существование проявляется биологическая разнокачественность составляющих популяцию особей, определяемая комбинативной и мутационной изменчивостью. При этом часть особей гибнет, а другие выживают и размножаются. В результате естественного отбора вновь возникающие мутации комбинируются с генами уже прошедших отбор особей, их фенотипическое выражение меняется, и на их основе возникают новые адаптации. Т. о., именно отбор является главным движущим фактором эволюции, обусловливающим возникновение новых адаптаций, преобразование организмов и видообразование. Отбор может проявляться в разных формах: стабилизирующий, обеспечивающий сохранение в неизменных условиях среды уже сформировавшихся адаптации, движущий, или ведущий, приводящий к выработке новых адаптаций, и дизруптивный, или разрывающий, обусловливающий возникновение Полиморфизма при разнонаправленных изменениях среды обитания популяции. В современном Э. у. представление о факторах эволюции обогатилось выделением популяции как элементарной единицы эволюции, теорией изоляции и углублением теории естественного отбора. Анализ изоляции, как фактора, обеспечивающего увеличение разнообразия жизненных форм, лежит в основе современных представлений о видообразовании (См. Видообразование) и структуре вида. Наиболее полно изучено аллопатрическое видообразование (см. Аллопатрия), связанное с расселением вида и географических изоляцией окраинных популяций. Менее изучено симпатрическое видообразование (см. Симпатрия), обусловленное экологической, хронологической или этологической (поведенческой) изоляцией. Эволюционные процессы, протекающие внутри вида и завершающиеся видообразованием, часто объединяют под общим названием микроэволюции (См. Микроэволюция). Макроэволюцией называется историческое развитие групп организмов (таксонов) надвидового ранга. Эволюция надвидовых таксонов является результатом видообразования, происходящего под действием естественного отбора. Однако использование разных масштабов времени (эволюция больших таксонов складывается из многих этапов видообразования) и методов изучения (использование данных палеонтологии, сравнит. морфологии, эмбриологии и др.) позволяет выявить закономерности, ускользающие при изучении микроэволюции. Важнейшими задачами концепции макроэволюции являются анализ соотношения индивидуального и исторического развития организмов, анализ закономерностей филогенеза и главных направлений эволюционного процесса. В 1866 немецкий естествоиспытатель Э. Геккель сформулировал Биогенетический закон, согласно которому в онтогенезе кратко повторяются этапы филогенеза данной систематической группы. Мутации проявляются в фенотипе взрослого организма в результате того, что они изменяют процессы его онтогенеза. Поэтому естественный отбор взрослых особей приводит к эволюции процессов онтогенеза — взаимозависимостей развивающихся органов, названных И. И. Шмальгаузеном онтогенетическими корреляциями. Перестройка системы онтогенетических корреляций под действием движущего отбора приводит к возникновению изменений — Филэмбриогенезов,посредством которых в ходе филогенеза формируются новые признаки организмов. В том случае, если изменение происходит на конечной стадии развития органа, осуществляется дальнейшая эволюция органов предков (см. Анаболия); бывают также отклонения онтогенеза на промежуточных стадиях, что приводит к перестройке органов (см. Девиация); изменение закладки и развития ранних зачатков может приводить к возникновению органов, отсутствовавших у предков (см. Архаллаксис). Однако эволюция онтогенетических корреляций под действием стабилизирующего отбора приводит к сохранению лишь тех корреляций, которые наиболее надёжно обеспечивают процессы онтогенеза. Эти корреляции и являются рекапитуляциями — повторениями в онтогенезе потомков филогенетических состояний предков; благодаря им обеспечивается биогенетический закон. Направление филогенеза каждой систематической группы определяется конкретным соотношением среды, в которой протекает эволюция данного таксона, и его организации. Дивергенция (расхождение признаков) двух или нескольких таксонов, возникающих от общего предка, обусловлена различиями в условиях среды; она начинается на популяционном уровне, обусловливает увеличение числа видов и продолжается на уровне надвидовых таксонов. Именно дивергентной эволюцией (обусловлено таксономическое разнообразие живых существ. Реже встречается параллельная эволюция. Она возникает в тех случаях, когда первично дивергировавшие таксоны остаются в сходных условиях среды и вырабатывают на основе сходной, унаследованной от общего предка, организации сходные приспособления. Конвергенция (схождение признаков) происходит в тех случаях, когда неродственные таксоны приспосабливаются к одинаковым условиям. Биологический прогресс может достигаться путём общего повышения уровня организации, обусловливающего адаптацию организмов к условиям среды, более широким и разнообразным, чем те, в которых обитали их предки. Такие изменения — Ароморфозы — возникают редко и обязательно сменяются Алломорфозами — дивергенцией и приспособлением к более частным условиям в процессе освоения новой среды обитания. Выработка узких адаптации в филогенезе группы приводит к специализации. Выделенные Шмальгаузеном 4 основных типа специализации — Теломорфоз, Гипоморфоз, Гиперморфоз и Катаморфоз — различаются по характеру приспособлений, но все приводят к замедлению темпов эволюции (См. Темпы эволюции) и в силу утраты органами специализированных животных мультифункциональности — к снижению эволюционной пластичности. При сохранении стабильных условий среды специализированные виды могут существовать неограниченно долго. Так возникают «живые ископаемые», например многие роды моллюсков и плеченогих, существующие с кембрия до наших дней. При резких изменениях условий жизни специализированные виды вымирают, тогда как более пластичные успевают адаптироваться к этим изменениям. Э. у. и главным образом его теоретическое ядро — эволюционная теория — служат как важным естественнонаучным обоснованием диалектического материализма, так и одной из методологических основ современной биологии.