Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria_igr_EKZAMEN_teoria.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
881.33 Кб
Скачать
  1. Учёт выигрышей по критерию Гурвица крайним пессимистом, крайним оптимистом и нейтралом.

Игра с природой – математическая модель принятия оптимальных решений в ситуации, когда одним из игроков является окружающий процесс принятия решения среда, называется «природой». При этом различают принятие решений в условиях риска и в условиях неопределённости.

В игре с природой действуют 2 игрока, причем только один из них действует осознанно. Этого игрока принято называть лицом принимающим решения(ЛПР). Иногда его называют статистиком, а теорию игр с природой – теорией статистических решений.

Природа является вторым участником игры, не являющимся ни противником, ни союзником ЛПР, поскольку она не действует осознанно против или за ЛПР, т.е. является объективной действительностью безразличной к результату игры.

Другими словами, при выборе решения мы находим некоторый средний результат при состоянии, находящемся между крайним пессимизмом и безудержным оптимизмом.

Рассмотрим игру с природой размера m x n, вероятности состояний неизвестны.

Введём специальный коэффициент λ [0,1], которым обозначим количественную «меру оптимизма» игрока А при выборе стратегии. Данный коэффициент выбирает сам игрок, на основании интуиции, личного опыта, состояния окружающей среды или на основе статистических исследований результатов принятия решений.

Оптимальной стратегией считается стратегия Ai0 с максимальным показателем эффективности:

vi0*=max{α*max vij+(1-α)*min vij для выигрышей

vi0*=min{α*min vij+(1-α)*max vij} потерь

Игрок А при использовании критерия Гурвица с коэффициентом λ [0,1] занимает более взвешенную позицию, чем если бы он применил критерий Вальда или максимаксный критерий.

Выбор показателя оптимизма λ логичен: вместо того, чтобы придерживаться двух крайностей в оценке ситуации в большинстве случаев целесообразно придерживаться некоторой промежуточной позиции, которая учитывает как наихудшее, так и наилучшее поведение природы.

Весь выигрыш Игрока зависит от того, какой коэффициент оптимизма он выберет. Он может рискнуть и попробовать выиграть большую сумму, а может не рисковать и с уверенностью выиграть меньшую сумму. Таким образом, игрок может быть пессимистом, крайним оптимистом или нейтралом.

Коэффициент оптимизма λ выбирается между 0 и 1, при этом если коэффициент равен 1, то критерий Гурвица превращается в критерий Вальда (по пессимизму результата), если коэффициент равен 0, то в максимаксный – то есть игрок будет крайним оптимистом.. Число (1- λ) будет характеризовать меру пессимизма игрока А. Таким образом коэффициенты оптимизма и пессимизма в сумме дают единицу.

С увеличением меры ответственности коэффициент λ стремится к нулю: чем серьезнее последствия ошибочных решений, тем больше желание ЛПР перестраховаться. А чем ближе λ к нулю, тем ближе (1- λ) к единице, т.е. тем больше пессимизма. И наоборот. Заметим, что при коэффициенте λ=0,5 видно нейтральность игрока в оценивании ситуации при выборе стратегии.

  1. Вероятностная интерпретация коэффициентов критерия Гурвица.

Игра с природой – математическая модель принятия оптимальных решений в ситуации, когда одним из игроков является окружающий процесс принятия решения среда, называется «природой». При этом различают принятие решений в условиях риска и в условиях неопределённости.

В игре с природой действуют 2 игрока, причем только один из них действует осознанно. Этого игрока принято называть лицом принимающим решения(ЛПР). Иногда его называют статистиком, а теорию игр с природой – теорией статистических решений.

Природа является вторым участником игры, не являющимся ни противником, ни союзником ЛПР, поскольку она не действует осознанно против или за ЛПР, т.е. является объективной действительностью безразличной к результату игры.

Другими словами, при выборе решения мы находим некоторый средний результат при состоянии, находящемся между крайним пессимизмом и безудержным оптимизмом.

Рассмотрим игру с природой размера m x n, вероятности состояний неизвестны.

Введём специальный коэффициент λ [0,1], которым обозначим количественную «меру оптимизма» игрока А при выборе стратегии. Данный коэффициент выбирает сам игрок, на основании интуиции, личного опыта, состояния окружающей среды или на основе статистических исследований результатов принятия решений.

Оптимальной стратегией считается стратегия Ai0 с максимальным показателем эффективности:

vi0*=max{α*max vij+(1-α)*min vij для выигрышей

vi0*=min{α*min vij+(1-α)*max vij} потерь

Игрок А при использовании критерия Гурвица с коэффициентом λ [0,1] занимает более взвешенную позицию, чем если бы он применил критерий Вальда или максимаксный критерий.

Выбор показателя оптимизма λ логичен: вместо того, чтобы придерживаться двух крайностей в оценке ситуации в большинстве случаев целесообразно придерживаться некоторой промежуточной позиции, которая учитывает как наихудшее, так и наилучшее поведение природы.

В критерии Гурвица коэффициент отражает вероятность наиболее благоприятной состояния среды. А 1- коэффициент - наименее благоприятного состояния среды.

Для матрицы выигрышей: результатом наиболее благоприятной реализации i-й стратегии с вероятностью альфа является максимальный элемент i-й строки, а результатом наименее благоприятной реализации i-й стратегии с вероятностью, соответственно,1-альфа является минимальный элемент i-й строки

Для матрицы потерь: результатом наиболее благоприятной реализации i-й стратегии с вероятностью альфа является является минимальный элемент i-й строки, а результатом наименее благоприятной реализации i-й стратегии с вероятностью, соответственно,1- альфа является максимальный элемент i-й строки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]