Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria_igr_EKZAMEN_teoria.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
881.33 Кб
Скачать
  1. Максимаксный критерий (крайнего оптимизма) оптимальности чистых стратегий.

Игра с природой – математическая модель принятия оптимальных решений в ситуации, когда одним из игроков является окружающий процесс принятия решения среда, называется «природой». При этом различают принятие решений в условиях риска и в условиях неопределённости.

В игре с природой действуют 2 игрока, причем только один из них действует осознанно. Этого игрока принято называть лицом принимающим решения(ЛПР). Иногда его называют статистиком, а теорию игр с природой – теорией статистических решений.

Природа является вторым участником игры, не являющимся ни противником, ни союзником ЛПР, поскольку она не действует осознанно против или за ЛПР, т.е. является объективной действительностью безразличной к результату игры.

Является противоположностью критерия Вальда. Представляет собой частный случай обобщенного критерия Гурвица относительно выигрышей, когда коэф. выбираются следующим образом: λ1,..,n-1=0, λn=1

Оптимальной среди чистых стратегий по максимаксному критерию является стратегия Аio с максимальным показателем эффективности: vio=max max vij

Т.е. стратегия, максимальный выигрыш при которой максимален среди максимальных выигрышей всех чистых стратегий. Поэтому оптимальной будет стратегий, при которой (хотя бы) один из выигрышей является максимальным среди выигрышей всех чистых стратегий .Оптимальная по максимаксному критерию стратегия гарантирует игроку А возможность наибольшего выигрыша, равного максимаксу.

Для максимаксного критерия показатели пессимизма и оптимизма равны соответственно , . Таким образом, максимаксный критерий является критерием крайнего оптимизма, так как ориентирует ЛПР на наилучшее, благоприятнейшее для него состояния природы и, следовательно, на порой неоправданно легкомысленное поведение при выборе стратегий. Вместе с тем, в некоторых ситуациях этим критерием пользуются осознанно, например, в ситуации когда перед игроком стоит дилемма: либо получить наибольший выигрыш, либо стать банкротом. Бытовое отражение подобной ситуации иллистрируется поговорками: «Пан или пропал», «Кто не рискует, тот не выигрывает». «Всё или ничего».

  1. Критерий пессимизма – оптимизма Гурвица оптимальности чистых стратегий относительно выигрышей.

Игра с природой – математическая модель принятия оптимальных решений в ситуации, когда одним из игроков является окружающий процесс принятия решения среда, называется «природой». При этом различают принятие решений в условиях риска и в условиях неопределённости.

В игре с природой действуют 2 игрока, причем только один из них действует осознанно. Этого игрока принято называть лицом принимающим решения(ЛПР). Иногда его называют статистиком, а теорию игр с природой – теорией статистических решений.

Природа является вторым участником игры, не являющимся ни противником, ни союзником ЛПР, поскольку она не действует осознанно против или за ЛПР, т.е. является объективной действительностью безразличной к результату игры.

Другими словами, при выборе решения мы находим некоторый средний результат при состоянии, находящемся между крайним пессимизмом и безудержным оптимизмом.

Рассмотрим игру с природой размера m x n, вероятности состояний неизвестны.

Введём специальный коэффициент λ [0,1], которым обозначим количественную «меру оптимизма» игрока А при выборе стратегии. Данный коэффициент выбирает сам игрок, на основании интуиции, личного опыта, состояния окружающей среды или на основе статистических исследований результатов принятия решений.

Оптимальной стратегией считается стратегия Ai0 с максимальным показателем эффективности:

vi0*=max{α*max vij+(1-α)*min vij для выигрышей

vi0*=min{α*min vij+(1-α)*max vij} потерь

Игрок А при использовании критерия Гурвица с коэффициентом λ [0,1] занимает более взвешенную позицию, чем если бы он применил критерий Вальда или максимаксный критерий.

Выбор показателя оптимизма λ логичен: вместо того, чтобы придерживаться двух крайностей в оценке ситуации в большинстве случаев целесообразно придерживаться некоторой промежуточной позиции, которая учитывает как наихудшее, так и наилучшее поведение природы.

Пример: для выигрыша

Пусть α=0,8

30

60

30

20

45

40

50

40

40

40

60

80

45

45

30

50

70

60

25

50

70

40

50

30

60

0,8*60+0,2*20=52

0,8*50+0,2*40=48

0,8*80+0,2*30=70

0,8*70+0,2*25=61

0,8*70+0,2*30=62

Vi0=70 io=3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]