
- •2)Напряженность электростатического поля. Используя закон Кулона, получите выражение для напряженности поля точечного заряда.
- •4)Потенциал, разность потенциалов: выражения, физический смысл. Получите связь напряженности с разностью потенциалов для одномерного случая. Градиент потенциала.
- •6)Принцип суперпозиции (наложения) как фундам. Св-во полей. Дайте форм-ку, напишите общ. Выражение для напряж. И потенциала эл. Полей, созданных системой точечных зарядов и заряженными телами.
- •1)Поток вектора напряж. Теорема Гаусса, выраж, форм-ка. Примените теорему Гаусса для нахождения напряж. Поля метал. Сферы, заряженной с поверхностной плотностью заряда
- •2)Теорема Гаусса,выраж,форм-ка.Примените теорему Гаусса для нахождения напряж. Поля длинной прямой нити,равномер. Заряженной с лин плот.Заряда
- •3)Теорема Гаусса,выраж,форм-ка.Примените теорему Гаусса для нахождения напряж. Поля бесконечно длинного прямого полого цилиндра ,равномер. Заряженного с лин плот.Заряда
- •1) Точечный заряд.
- •2)Получите выражение для потенциала поля равномерно заряженной по поверхности сферы, считая известным выражение для напр. Поля. Укажите положение, где выбрано . Нарисуйте графики .
- •4)Получите выражение для потенциала поля равномерно заряженной бесконечно протяженной плоскости в зависимости от расстояния X от плоскости. Нарисуйте графики .
- •1)Распределение зарядов в проводниках.Найдите,используя теорему Гаусса,напряженность поля внутри и вблизи поверхности проводника,равномерно заряженного с поверх. Плот. Заряда
- •2)Покажите на примере 2 сфер радиусами r1 иR2,соединенных проводящей нитью,что заряды по сферам распред. С поверх. Плотностью (Влиянием нити пренебречь).
- •3)Явление эл.-ст. Индукции,возн. При внесении незар. Проводника в эл.-ст. Поле. Что такое индуцированные(наведенные)заряды? Что называют эл.-ст.Защитой?
- •1)Электроемкость уединенного проводника и конд. От чего зависит электроемкость? Получите выражение для электроемкости сферы радиуса r.
- •5)Выведите выражение для электроемкости при парал. И послед. Соединении конденсаторов.
- •1)Диполь и его электрический момент. Нарисуйте с помощью силовых линий и эквипотенц. Поверхностей поле диполя. Напряженность и потенциал поля диполя.
- •2)Поведение диполя во внешнем однородном и неоднородном эл. Полях.
- •3)Работа ,совершаемая при повороте диполя во внеш. Эл. Поле. Энергия диполя во внешнем поле.
- •4)Поляризация диэлектриков. Деформационная,ориентационная, и ионная поляризация.Поляризуемость молекул пол. И непол. Диэлектриков
- •5)Вектор поляризации.Вектор эл. Смещения.Диэл. Проницаемость и восприимчивость, их зависимость от температуры.Теорема Гаусса для диэлектриков.
- •1)Энергия точечного заряда во внеш. Эл. Поле. Энергия взаим-я системы точечных неподвижных зарядов.
- •3)Энергия эл.-ст. Поля. Получите выражение для объемной плотности энергии поля на примере плоского конденсатора.
- •1)Сила тока.Плотность тока.Получите выражение,связ. Плотность тока со средней скоростью носителей тока и их концентрацией.
- •2)Постоянный эл. Ток.Источники тока.Сторонние силы.Эдс источника.Разность потенциалов и напряжение.З-н Ома в инт. Форме дляоднородного и неод.Участков цепи ,для замкнутой цепи.
- •3)Электронная теория электропроводности металлов: основные предположения теории и вывод з-на Ома в диф. Форме. Затруднения теории электропроводности.
- •5)Эл. Сопротивление.Как объясняется сопротивление проводников на основе эл. Теории?Зав-ть сопротивления проводников от длины и площади сечения проводника.Уд. Сопр. Металлов,его зав-ть от темп.
- •1)Сила Лоренца как следствие опытных данных, ее эл. И маг. Составляющие. Напишите выражение для силы в векторном виде, укажите направления векторов. Дайте определение вектора магнитной индукции.
- •3)Напишите выр. Для маг. Индукции поля элемента тока(з-н Био-Савара-Лапласа) в век. И скал. Формах,сд. Рисунок,укажите напр. Векторов.Нап. Выр. И дайте форм-ку принципа суперпозиции для маг. Полей.
- •4)Получите с помощью з-на Био-Савара-Лапласа и принципа суперпозиции выр-ие для индукции маг. Поля прямого проводника с током (конечной длинны и бесконечно длинного).
- •1)Магнитное поле прямого проводника конечной длины.
- •2)Магнитное поле прямого бесконечно длинного проводника.
- •5)Получите с помощью з-на Био-Савара-Лапласа и принципа суперпозиции выр-ие для индукции маг. Поля на оси и в центре кругового тока. Маг. Момент контура с током.
- •3)Магнитное поле на оси кругового тока.
- •4) Магнитное поле в центре кругового тока
- •6)Нап. Выр. И дайте форм-ку теоремы о циркуляции вектора маг. Индукции. Получите с помощью этой теоремы выр-ие для индукции маг. Поля прямого бесконечно длинного проводника с током.
- •1) Прямой бесконечный проводник с током.
- •7)Напишите выр. И дайте форм-ку теоремы о циркуляции вектора маг. Индукции.Получите с помощью этой теоремы индукцию маг. Поля внутри длинного солиноида.
- •2) Индукция магнитного поля внутри длинного соленоида.
- •Тема 10
- •1)Сила, действующая на проводник с током в магнитном поле (сила Ампера), напишите выр. В век. И скал. Формах, сделайте рисунок, укажите направления векторов.
- •2)Получите выр. Для силы взаимодействия 2 прямых длинных параллельных проводников с токами.
- •3)Получите выр. Для вращающего момента, действ. На контур с током в магнитном поле.
- •1) Однородное поле.
- •4)Опишите поведение витка с током в однород. И неоднор. Маг. Полях. Напишите выр. Для силы,действ. На контур с током в неоднород. Маг. Поле.
- •5)Работа по перемещению проводника и контура с током в маг. Поле. Энергия контура с током во внешнем маг. Поле.
- •Тема 11
- •2)Получите выражение для эдс индукции, возн. В проводнике, движущемся в маг. Поле.
- •3)Явление самоиндукции. Эдс самоиндукции. Индуктивность (коэф. Самоиндукции) проводника.
- •4)Получите выр. Для индуктивности длинного соленоида.
- •Тема 12
- •1)Маг. Энергия проводника с током. Энергия маг. Поля. Получите выражение для объемной плотности энергии маг. Поля на примере длинного соленоида.
- •Тема 13
- •1)Хар-ки маг. Поля: индукция, напр-ть, намагн-ть, связь м/у ними. Маг. Проницаемость и восприимчивость вещества.
- •2)Теорема о циркуляции вектора индукции маг. Поля в магнетиках.
- •3)Пара- и диамагнетики, их маг. Св-ва. Качественное объяснение намагниченности этих вещ-в на основе представлений о магнитных моментах молекул. Диамагнетизм.
- •4)Ферромагнетики, их св-ва. Гистерезис. Применение ферромагнетиков.
- •1)Вихревое эл. Поле. Максвелловская трактовка явления эл.-маг. Индукции. Первое осн. Положение теории Максвелла: напишите мат. Выражение в инт. Форме и дайте форм-ку.
- •2)Ток смещеня. 2 основное положение теории Максвелла: нап. Мат. Выр. В инт. Форме и дайте форм-ку.
- •3)Сист. Ур-ий эл.-маг. Теории Максвелла. Поясните, что принцип. Нового внес м. В ранее известные з-ны эл-ва и магнетизма.
- •Тема 15
- •1)Свободные колебания .Диф. Ур-ие свободных гармонических колебаний и его решение. Амплитуда, период, круговая частота, фаза колебаний. Скорость и ускорение при колебаниях.
- •2)Пружинный маятник. Напишите диф. Ур-ие колебаний пруж. Маятника. Получите ф-лу для вычисления периода малых колебаний пруж. Маятника. Частота колебаний.
- •3)Мат. Маятник. Нап. Диф. Ур-ие колебаний и получите ф-лу для вычисления периода малых колебаний. Маятника. Частота колебаний.
- •4)Физ. Маятник. Нап. Диф. Ур-ие колебаний и получите ф-лу для вычисления периода малых колебаний. Маятника. Частота колебаний. Приведенная длина физ. Маятника.
- •5)Смещение, скорость и ускорение при гармонич. Колебаниях.
- •6)Энергия гарм. Колебаний. Средняя за период энергия гарм. Осциллятора.
- •Тема 16
- •1)Нап. Диф. Ур-ие затухающих колебаний и его решение, поясните все причины. Нап. Выр-ие для амплитуды при затух. Колебаниях, нар. График.
- •2)Выужденные колебания . Нап. Диф. Ур-ие затухающих колебаний и его решение. Нарисуйте график амплитуды колебаний в зависимости от частоты вынуждающей силы. Резонанс.
- •Тема 17
- •1)Волны. Продольные и поперечные, примеры. Волновой фронт и волн. Поверхность. Получите ур-ие плоской монохроматич. Бегущей волны. Длина волны, фаза и частота колебаий,фазовая скорость,волновое число.
- •2)Стоячие волны. Пол. Выр-ие для смещения, график. Укажите на графике узлы и пучности, дайте пояснения.
- •Тема 18
- •1)Эл.-маг. Волны. Поперечность электромагнитных волн. Скорость эл.-маг. Волны в среде и вакууме. Показатель преломления. Связь напряженностей эл. И маг. Полей в эл.-маг. Волне.
- •2)Плоская монохром. Бегущая волна как следствие ур-ий Максвелла: напишите выражения и сделайте рисунок.
- •3)Энергия эл.-маг. Волны. Вектор Пойнтинга и среднее значение его модуля. Интенсивность волны.
- •Тема 19
- •1)Интерференция света. Когерентность. Получение интерференционных картин. Оптическая разность хода. Условия максимумов и минимумов при интерференции. Применение интерференции.
- •2)Дифракция света. Качественное объяснение дифракции на основе принципа Гюйгенса-Френеля. Дифракционная решетка. Разрешающая способность оптических приборов.
- •3)Поляризация света. Естественный и поляризованный свет. Способы полученя поляризованного света.
3)Поляризация света. Естественный и поляризованный свет. Способы полученя поляризованного света.
Поляризация — для электромагнитных волн это явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H. Когерентное электромагнитное излучение может иметь:
Линейную поляризацию — в направлении, перпендикулярном направлению распространения волны;
Круговую поляризацию — правую либо левую, в зависимости от направления вращения вектора индукции;
Эллиптическую поляризацию — случай, промежуточный между круговой и линейными поляризациями.
Некогерентное излучение может не быть поляризованным, либо быть полностью или частично поляризованным любым из указанных способов. В этом случае понятие поляризации понимается статистически.
При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально. Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.
Линейная
Круговая
Эллиптическая
|
Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.
Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса). Поляризация фотона является одной из реализаций q-бита.
Свет солнца, являющийся тепловым излучением, не имеет поляризации, однако рассеянный свет неба приобретает частичную линейную поляризацию. Поляризация света меняется также при отражении. На этих фактах основаны применения поляризующих фильтров в фотографии и т. д.
Линейную поляризацию имеет обычно излучение антенн.
По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.
Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света прошедшего через поляризаторы подчиняется закону Малюса. На этом принципе работают жидкокристаллические экраны.
Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например креветка-богомол павлиновая[1] способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией.
1 Не обязательно брать цилиндр, можно взять любую призму, важно, чтобы ее образующие были перпендикулярны торцевым сечениям и самой заряженной плоскости.
2 Будем употреблять для краткости слово «емкость»
3Подумайте над вопросом: проводник заряжен зарядом 1 мкКл. Во сколько раз изменится его емкость, если заряд увеличить до 5 мкКл?
4 Силы F2 и F1 направлены по касательным к силовым линиям , а не горизонтально, как показано на рис., но мы будем этим небольшим различием пренебрегать.
5 Для газов использовать неудобно, т.к. она очень мало отличается от единицы (для воздуха = 1,000576), поэтому для газов чаще используют .
6 На границе двух диэлектриков силовые линии преломляются. При этом для вектора Е совпадают касательные составляющие, а отношение нормальных составляющих равно отношению диэлектрических проницаемостей. Для вектора D –наоборот (см. учебник).
7 Не приводим из-за громоздкости.
8 Если бросить заряженный металлический предмет – его движение можно считать кратковременным током. Если
вблизи находится компас, его стрелка даст отклонение, т.к. она реагирует на магнитное поле тока.
9 В металлах положительные заряды (ионы решетки) не могут перемещаться – они и есть сам металл.
10На вопрос, где работают сторонние силы ответить трудно. Натираем стеклянную палочку, дотрагиваемся до проводника, работают сторонние силы, а где? В батарейках сторонние силы работают только на границе проводника с электролитом. Внутри проводника всегда работают электростатические силы.
11 Открыт опытным путем нем. учителем Омом в 1827 г.В приведенных формулах интегралов нет, но формулы можно вывести из дифференциальной формы закона путем интегрирования (см. дальше по тексту).
12 - большая печатная греческая буква «омега».
13 Вычисления не приводим в силу их громоздкости, см. например, Матвеев А.Н. Электричество и магнетизм
14 В школьной физике силой Лоренца называют только магнитную часть полной силы (см. выражение ()).
15 Исторически сложилась путаница в терминологии. В электростатике силовая характеристика поля напряженность Е, а вектор электрической индукции D вспомогательный вектор, в магнетизме силовая характеристика поля - вектор магнитной индукции В, а вспомогательный вектор вектор напряженности магнитного поля H.
16 О циркуляции – см. Электростатика
17 О циркуляции – см. Электростатика
18 В теории Максвелла два основных положения. В литературе существуют разногласия, какое из них называть первым, а какое вторм.
19 Для характеристики электрического поля можно использовать вектор напряженности Е или электрической индукции D, а для магнитного – вектор магнитной индукции В или вектор магнитной напряженности Н. Мы будем комбинировать эти векторы так, чтобы уравнения имели наиболее простой вид.
20 Если точка О совпадает с центром тяжести, тело будет находиться в положении безразличного равновесия
21 cos +cos =2cos(+)/2 cos()/2