
- •2)Напряженность электростатического поля. Используя закон Кулона, получите выражение для напряженности поля точечного заряда.
- •4)Потенциал, разность потенциалов: выражения, физический смысл. Получите связь напряженности с разностью потенциалов для одномерного случая. Градиент потенциала.
- •6)Принцип суперпозиции (наложения) как фундам. Св-во полей. Дайте форм-ку, напишите общ. Выражение для напряж. И потенциала эл. Полей, созданных системой точечных зарядов и заряженными телами.
- •1)Поток вектора напряж. Теорема Гаусса, выраж, форм-ка. Примените теорему Гаусса для нахождения напряж. Поля метал. Сферы, заряженной с поверхностной плотностью заряда
- •2)Теорема Гаусса,выраж,форм-ка.Примените теорему Гаусса для нахождения напряж. Поля длинной прямой нити,равномер. Заряженной с лин плот.Заряда
- •3)Теорема Гаусса,выраж,форм-ка.Примените теорему Гаусса для нахождения напряж. Поля бесконечно длинного прямого полого цилиндра ,равномер. Заряженного с лин плот.Заряда
- •1) Точечный заряд.
- •2)Получите выражение для потенциала поля равномерно заряженной по поверхности сферы, считая известным выражение для напр. Поля. Укажите положение, где выбрано . Нарисуйте графики .
- •4)Получите выражение для потенциала поля равномерно заряженной бесконечно протяженной плоскости в зависимости от расстояния X от плоскости. Нарисуйте графики .
- •1)Распределение зарядов в проводниках.Найдите,используя теорему Гаусса,напряженность поля внутри и вблизи поверхности проводника,равномерно заряженного с поверх. Плот. Заряда
- •2)Покажите на примере 2 сфер радиусами r1 иR2,соединенных проводящей нитью,что заряды по сферам распред. С поверх. Плотностью (Влиянием нити пренебречь).
- •3)Явление эл.-ст. Индукции,возн. При внесении незар. Проводника в эл.-ст. Поле. Что такое индуцированные(наведенные)заряды? Что называют эл.-ст.Защитой?
- •1)Электроемкость уединенного проводника и конд. От чего зависит электроемкость? Получите выражение для электроемкости сферы радиуса r.
- •5)Выведите выражение для электроемкости при парал. И послед. Соединении конденсаторов.
- •1)Диполь и его электрический момент. Нарисуйте с помощью силовых линий и эквипотенц. Поверхностей поле диполя. Напряженность и потенциал поля диполя.
- •2)Поведение диполя во внешнем однородном и неоднородном эл. Полях.
- •3)Работа ,совершаемая при повороте диполя во внеш. Эл. Поле. Энергия диполя во внешнем поле.
- •4)Поляризация диэлектриков. Деформационная,ориентационная, и ионная поляризация.Поляризуемость молекул пол. И непол. Диэлектриков
- •5)Вектор поляризации.Вектор эл. Смещения.Диэл. Проницаемость и восприимчивость, их зависимость от температуры.Теорема Гаусса для диэлектриков.
- •1)Энергия точечного заряда во внеш. Эл. Поле. Энергия взаим-я системы точечных неподвижных зарядов.
- •3)Энергия эл.-ст. Поля. Получите выражение для объемной плотности энергии поля на примере плоского конденсатора.
- •1)Сила тока.Плотность тока.Получите выражение,связ. Плотность тока со средней скоростью носителей тока и их концентрацией.
- •2)Постоянный эл. Ток.Источники тока.Сторонние силы.Эдс источника.Разность потенциалов и напряжение.З-н Ома в инт. Форме дляоднородного и неод.Участков цепи ,для замкнутой цепи.
- •3)Электронная теория электропроводности металлов: основные предположения теории и вывод з-на Ома в диф. Форме. Затруднения теории электропроводности.
- •5)Эл. Сопротивление.Как объясняется сопротивление проводников на основе эл. Теории?Зав-ть сопротивления проводников от длины и площади сечения проводника.Уд. Сопр. Металлов,его зав-ть от темп.
- •1)Сила Лоренца как следствие опытных данных, ее эл. И маг. Составляющие. Напишите выражение для силы в векторном виде, укажите направления векторов. Дайте определение вектора магнитной индукции.
- •3)Напишите выр. Для маг. Индукции поля элемента тока(з-н Био-Савара-Лапласа) в век. И скал. Формах,сд. Рисунок,укажите напр. Векторов.Нап. Выр. И дайте форм-ку принципа суперпозиции для маг. Полей.
- •4)Получите с помощью з-на Био-Савара-Лапласа и принципа суперпозиции выр-ие для индукции маг. Поля прямого проводника с током (конечной длинны и бесконечно длинного).
- •1)Магнитное поле прямого проводника конечной длины.
- •2)Магнитное поле прямого бесконечно длинного проводника.
- •5)Получите с помощью з-на Био-Савара-Лапласа и принципа суперпозиции выр-ие для индукции маг. Поля на оси и в центре кругового тока. Маг. Момент контура с током.
- •3)Магнитное поле на оси кругового тока.
- •4) Магнитное поле в центре кругового тока
- •6)Нап. Выр. И дайте форм-ку теоремы о циркуляции вектора маг. Индукции. Получите с помощью этой теоремы выр-ие для индукции маг. Поля прямого бесконечно длинного проводника с током.
- •1) Прямой бесконечный проводник с током.
- •7)Напишите выр. И дайте форм-ку теоремы о циркуляции вектора маг. Индукции.Получите с помощью этой теоремы индукцию маг. Поля внутри длинного солиноида.
- •2) Индукция магнитного поля внутри длинного соленоида.
- •Тема 10
- •1)Сила, действующая на проводник с током в магнитном поле (сила Ампера), напишите выр. В век. И скал. Формах, сделайте рисунок, укажите направления векторов.
- •2)Получите выр. Для силы взаимодействия 2 прямых длинных параллельных проводников с токами.
- •3)Получите выр. Для вращающего момента, действ. На контур с током в магнитном поле.
- •1) Однородное поле.
- •4)Опишите поведение витка с током в однород. И неоднор. Маг. Полях. Напишите выр. Для силы,действ. На контур с током в неоднород. Маг. Поле.
- •5)Работа по перемещению проводника и контура с током в маг. Поле. Энергия контура с током во внешнем маг. Поле.
- •Тема 11
- •2)Получите выражение для эдс индукции, возн. В проводнике, движущемся в маг. Поле.
- •3)Явление самоиндукции. Эдс самоиндукции. Индуктивность (коэф. Самоиндукции) проводника.
- •4)Получите выр. Для индуктивности длинного соленоида.
- •Тема 12
- •1)Маг. Энергия проводника с током. Энергия маг. Поля. Получите выражение для объемной плотности энергии маг. Поля на примере длинного соленоида.
- •Тема 13
- •1)Хар-ки маг. Поля: индукция, напр-ть, намагн-ть, связь м/у ними. Маг. Проницаемость и восприимчивость вещества.
- •2)Теорема о циркуляции вектора индукции маг. Поля в магнетиках.
- •3)Пара- и диамагнетики, их маг. Св-ва. Качественное объяснение намагниченности этих вещ-в на основе представлений о магнитных моментах молекул. Диамагнетизм.
- •4)Ферромагнетики, их св-ва. Гистерезис. Применение ферромагнетиков.
- •1)Вихревое эл. Поле. Максвелловская трактовка явления эл.-маг. Индукции. Первое осн. Положение теории Максвелла: напишите мат. Выражение в инт. Форме и дайте форм-ку.
- •2)Ток смещеня. 2 основное положение теории Максвелла: нап. Мат. Выр. В инт. Форме и дайте форм-ку.
- •3)Сист. Ур-ий эл.-маг. Теории Максвелла. Поясните, что принцип. Нового внес м. В ранее известные з-ны эл-ва и магнетизма.
- •Тема 15
- •1)Свободные колебания .Диф. Ур-ие свободных гармонических колебаний и его решение. Амплитуда, период, круговая частота, фаза колебаний. Скорость и ускорение при колебаниях.
- •2)Пружинный маятник. Напишите диф. Ур-ие колебаний пруж. Маятника. Получите ф-лу для вычисления периода малых колебаний пруж. Маятника. Частота колебаний.
- •3)Мат. Маятник. Нап. Диф. Ур-ие колебаний и получите ф-лу для вычисления периода малых колебаний. Маятника. Частота колебаний.
- •4)Физ. Маятник. Нап. Диф. Ур-ие колебаний и получите ф-лу для вычисления периода малых колебаний. Маятника. Частота колебаний. Приведенная длина физ. Маятника.
- •5)Смещение, скорость и ускорение при гармонич. Колебаниях.
- •6)Энергия гарм. Колебаний. Средняя за период энергия гарм. Осциллятора.
- •Тема 16
- •1)Нап. Диф. Ур-ие затухающих колебаний и его решение, поясните все причины. Нап. Выр-ие для амплитуды при затух. Колебаниях, нар. График.
- •2)Выужденные колебания . Нап. Диф. Ур-ие затухающих колебаний и его решение. Нарисуйте график амплитуды колебаний в зависимости от частоты вынуждающей силы. Резонанс.
- •Тема 17
- •1)Волны. Продольные и поперечные, примеры. Волновой фронт и волн. Поверхность. Получите ур-ие плоской монохроматич. Бегущей волны. Длина волны, фаза и частота колебаий,фазовая скорость,волновое число.
- •2)Стоячие волны. Пол. Выр-ие для смещения, график. Укажите на графике узлы и пучности, дайте пояснения.
- •Тема 18
- •1)Эл.-маг. Волны. Поперечность электромагнитных волн. Скорость эл.-маг. Волны в среде и вакууме. Показатель преломления. Связь напряженностей эл. И маг. Полей в эл.-маг. Волне.
- •2)Плоская монохром. Бегущая волна как следствие ур-ий Максвелла: напишите выражения и сделайте рисунок.
- •3)Энергия эл.-маг. Волны. Вектор Пойнтинга и среднее значение его модуля. Интенсивность волны.
- •Тема 19
- •1)Интерференция света. Когерентность. Получение интерференционных картин. Оптическая разность хода. Условия максимумов и минимумов при интерференции. Применение интерференции.
- •2)Дифракция света. Качественное объяснение дифракции на основе принципа Гюйгенса-Френеля. Дифракционная решетка. Разрешающая способность оптических приборов.
- •3)Поляризация света. Естественный и поляризованный свет. Способы полученя поляризованного света.
ТЕМА 1
1)Эл. заряд.з-н сохр. эл. заряда. дискретность. з-н Кулона в век. и ск. виде.
Эл. заряд – это
св-во нек. частиц ,хар-ющее их способность
к эл.-маг. вз-ию. Все тела способны
приобретать эл. заряд. Различают заряды
“+” и ”-”. Разноименные заряды
притягиваются, одноименные – отталкиваются.
Наименьший “-”заряд – это з-д электрона
(е
= 1,61019Кл),”+”-
протона (+е).
Заряды
тел
всегда дискретны и кратны заряду
электрона. Т.к. число заряженных частиц
в телах огромно, а размеры частиц очень
малы, в большинстве случаев можно
говорить о непрерывном распределении
зарядов в телах. Электрический заряд
является инвариантом (величина заряда
остается одной и той же, независимо от
того, движется он в к- л. системе отсчета
или покоится). З-н
сохранения эл. заряда:
«В замкнутой (электрически изолированной)
системе
(
qi=const)
заряд остается постоянным».
Закон Кулона: сила электростатического взаимодействия между 2 точечными зарядами, заряженными сферами (шарами) прямо пропорциональна величинам их зарядов и обратно пропорциональна квадрату расстояния между их центрами.
(Кулоновская
(электростатическая) сила.
( векторная
форма, знак силы ()
зависит от выбора направления
радиус-вектора)
(
«коэфф. в СИ в з-не Кулона»,
о 8,851012 (Кл2/Н.м2) – электрическая постоянная)
|
линейная плотность заряда - эта заряд, приходящийся на единицу длины заряженного тела. |
|
поверхностная плотность заряда – это заряд, приходящийся на единицу площади поверхности заряженного тела |
|
объемная плотность заряда – это заряд, приходящийся на единицу объема заряженного тела |
2)Напряженность электростатического поля. Используя закон Кулона, получите выражение для напряженности поля точечного заряда.
В электростатике используется модель – точечный заряд – это заряженное тело, размерами которого можно пренебречь по сравнению с другими размерами в данной задаче. Кроме того, вводится понятие – пробный заряд – это заряд, вносимый в поле другого заряженного тела, и при этом не влияющий на это поле.
(Н/Кл=В/м)(
напряженность
(вектор) –
силовая характеристика электрического
поля, по смыслу – это сила, действующая
на единичный положительный пробный
заряд в данной точке поля.)
(
Используя закон Кулона, можно найти
напряженность поля точечного заряда;
q
заряд, создающий поле,
qo
пробный заряд, вносимый в это поле.)
3) Работа по переносу заряда в электростатическом поле. Покажите, что работа зависит только от нач. и конеч. положений заряда .Циркуляция вектора напр. эл.-ст. поля. Потенциальный характер эл.-ст. поля.
Сила, действующая
на заряд в электрическом поле. Пусть
точечный заряд q
переносится в поле, создаваемом другим
точечным зарядом qо.
Найдем работу, необходимую для переноса
q
из положения с радиус-вектором r1
в положение с радиус-вектором r2.
(см. рис.).
|
полная работа по переносу заряда q в электрическом поле, - угол между вектором Е и вектором перемещения dl |
||
|
Сведем подынтегральное выражение к одной переменной r, используя выражение для напряженности поля заряда qо и связь между перемещением dl и приращением радиус-вектора dr. Интегрируя, найдем выражение для работы. |
|
|
Из этой формулы следует очень важный вывод: работа в электростатическом поле не зависит от формы пути, а определяется только начальным и конечным положением переносимого заряда. |
|
Работа в электростатическом поле по замкнутому пути равна нулю |
Из механики известно, что силовое поле, работа в котором определяется только начальным и конечным положениями тела, называется консервативным. Следовательно, электростатическое поле является консервативным или чаще говорят, потенциальным Линейный интеграл по замкнутому контуру L называется циркуляцией. Отсюда следует:
|
Циркуляция вектора напряженности электростатического поля равна нулю. Это является условием потенциальности поля. |
4)Потенциал, разность потенциалов: выражения, физический смысл. Получите связь напряженности с разностью потенциалов для одномерного случая. Градиент потенциала.
Работа консервативных (потенциальных) сил равна убыли потенциальной энергии тела. Следовательно, можно ввести еще одну характеристику электростатического поля – потенциал .
(В = Дж/Кл) |
потенциал (скаляр) – энергетическая характеристика электростатического поля по смыслу это: 1) потенциальная энергия, которой обладает единичный положительный заряд, помещенный в данную точку поля или 2) работа, которую надо совершить, чтобы перенести единичный положительный заряд из данной точки 1 в бесконечность (). |
|
|
|
разность потенциалов – это работа, которую надо совершить, чтобы переместить единичный положительный заряд из точки 1 в точку 2 |
Найдем связь между напряженностью и потенциалом.
|
работа в потенциальном (консервативном) поле равна убыли потенциальной энергии |
||
|
выразим элементарную работу через напряженность и разность потенциалов; сократим на q, обозначим проекцию вектора Е на направление х как Ех, получим: |
|
|
|
связь между Е и в дифференциальной форме для одномерного случая, когда потенциал зависит только от координаты х (х) |
|
В трехмерном случае, когда потенциал является функцией (х,y,z), запишем формулы для каждой проекции и, объединяя их в одно выражение, найдем (учитывая, что Е вектор): |
|
(«набла»)
другое обозначение градиента
|
Напряженность электростатического поля равна градиенту потенциала, взятому с обратным знаком. |
Градиент – это вектор, показывающий направление наибольшего роста скалярной функции (в нашем случае - потенциала). В одномерном случае градиент напряженности d / dx приобретает простой физический смысл: он показывает, на сколько изменяется потенциал на единице длины.
«» в правой части формул означает, что вектор напряженности Е всегда направлен в сторону убывания потенциала.
Из приведенных выражений, зная (х,y,z), можно, дифференцируя, найти напряженность поля. Производя обратную операцию – интегрирование, можно при известной напряженности найти потенциал. Рассмотрим случай зависимости
Е и только от одной переменной х. Из формулы () находим:
|
Связь разности потенциалов с напряженностью в интегральной форме для одномерного случая, когда Е(х) |
5)Граф. изобр. эл.-ст. поля с помощью сил. линий и эквипотенц. поверхностей.Нарисуйте эти линии для полей 2 точечних одноим и разноим зарядов.Покажите,что вектор напр. всегда перпендик. эквипотенц. поверхности.
Электростатическое поле удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.
С
иловая
линия – это
линия, в каждой точке которой касательная
совпадает с направлением вектора
напряженности (см. рис.). Силовым линиям
придают направление стрелкой. Свойства
силовых линий:
1) Силовые линии непрерывны. Они имеют начало и конец – начинаются на положительных и заканчиваются на отрицательных зарядах.
2) Силовые линии не могут пересекаться друг с другом, т.к. напряженность – это сила, а две силы в данной точке от одного заряда не могут быть.
3) Силовые линии проводят так, чтобы их количество через единичную перпендикулярную площадку было пропорционально величине напряженности.
4) Силовые линии «выходят» и «входят» всегда перпендикулярно поверхности тела.
5) Силовую линию не следует путать с траекторией движущегося заряда. Касательная к траектории совпадает с направлением скорости, а касательная к силовой линии – с силой и, следовательно, с ускорением.
Эквипотенциальной поверхностью называют поверхность, в каждой точке которой потенциал имеет одинаковое значение = const.
Силовые линии всегда перпендикулярны эквипотенциальным поверхностям. Докажем это. Пусть вдоль эквипотенциальной поверхности перемещается точечный заряд q. Элементарная работа, совершаемая при этом равна dA=qEcosdl = qd = 0, т.к. d = 0. Поскольку q ,E и dl 0, следовательно
cos = 0 и = 90о .
|
На рисунке изображено электростатическое поле двух одинаковых точечных зарядов. Линии со стрелками – это силовые линии, замкнутые кривые – эквипотенциальные поверхности. В центре осевой линии, соединяющей заряды напряженность равна 0. На очень большом расстоянии от зарядов эквипотенциальные поверхности становятся сферическими. . |
|
На этом рисунке показано однородное поле – это поле, в каждой точке которого вектор напряженности остается постоянным по величине и направлению Эквипотенциальные поверхности – это плоскости, перпендикулярные силовым линиям. Вектор напряженности всегда направлен в сторону убывания потенциала. |