
- •Состав и принципы работы операционных систем и сред. Понятие, основные функции, типы операционных систем.
- •Определение операционной системы
- •Определение операционной среды
- •Последовательность действий оператора при решении задач на ранних компьютерах без операционной системы
- •Ранние операционные системы имели следующие характеристики
- •Язык управления заданиями
- •Операционные оболочки
- •Иерархическая структура компьютера и операционной системы
- •Последовательность развития системного программного обеспечения
- •9.Последовательность развития системного программного обеспечения
- •Методы обработки пользовательских программ в зависимости от их характеристик
- •Поколения операционных систем
- •Классификационные признаки в определении поколения операционной системы
- •13. Задачи, решаемые операционными системами
- •14. Единицы работ операционных систем
- •15. Классификация операционных систем
- •16. Основные характеристики однопрограммных ос
- •17. Основные характеристики многопрограммных ос
- •18. Организация памяти современного компьютера
- •19. Стековая память
- •Виртуальная память
- •Ассоциативная память
- •Внешняя память
- •Мультипрограммность и мультизадачность
- •Понятие задания в ос
- •Управление ресурсами в ос
- •Понятия процесса и потока
- •Понятие волокна
- •Управление процессами и потоками
- •Формы мультипрограммной работы
- •30.Критерии организации пакетной обработки
- •31. Критерии организации режима разделения времени
- •32.Характеристики систем реального времени
- •33.Характеристики симметричных мультипроцессорных систем
- •34. Последовательность создания процессов в компьютере
- •35. Характеристика образа процесса
- •36. Дескриптор процесса и его характеристика
- •37. Контекст процесса и его характеристика
- •38 Способы реализации потоков
- •39 Достоинства реализации потоков в ядре
- •40 Недостатки реализации потоков в ядре
- •41 Достоинства реализации потоков в пространстве пользователя
- •42) Недостатки реализации потоков в пространстве пользователя
- •43) Потенциальные проблемы, возникающие при выполнении процессов, не осведомленных друг о друге
- •44) Методы взаимоисключения
- •45) Условия возникновения тупиковой ситуации
- •Классы прерываний в компьютерах
- •Состав аппаратных средств систем прерываний компьютеров
- •Последовательность обработки прерываний (запоминание контекста)
- •Последовательность обработки прерываний (собственно обработка прерывания)
- •50. Эволюция ввода – вывода
- •51. Согласование скоростей обмена и кэширования данных
- •52. Системный монитор и его использование
- •53. Диспетчер задач Windows
- •Файл подкачки и его характеристики
- •Адресное пространство операционной системы
- •Соответствие между видом планирования единиц работы ос и выполняемыми функциями планирования
- •Соответствие между алгоритмом планирования и его характеристиками
- •Невытесняющие (non-preemptive)
- •Вытесняющие (preemptive)
- •Концепция квантования потоков
- •60. Приоритеты в алгоритмах планирования мультипрограммного вычислительного процесса.
- •61. Цели создания файловых систем
- •62. Фундаментальные способы организации файлов
- •63. Физическая организация размещения файлов на диске
- •Менеджер ввода-вывода
- •Шифрующая файловая система efs
- •Ресурсы, требуемые для работы устройству ввода-вывода
- •Фрагментация и ее виды, дефрагментация
- •68. Квотирование дискового пространства
- •69. Алгоритм дискового планирования
- •70. Установка разрешений файлам и каталогам
- •71. Семафор Дейкстры.
- •Архитектура операционной системы
- •Достоинства многослойной иерархической архитектуры ос
- •Достоинства микроядерной архитектуры ос
- •Эффективность операционной системы
- •77. Совместимость ос
- •78. Основные преимущества виртуализации ос
- •Драйверы устройств
- •80. Структура адресного пространства прикладного процесса
- •81. Понятие файла и файловой системы
- •82. Главная загрузочная запись диска и ее структура
- •83. Характеристика первичных и расширенных разделов диска
- •84. Виды логической организации файлов
- •85. Точки соединения с ос Windows
- •86. Каталоги файловой системы ntfs
- •87. Интерфейс прикладного программирования
- •88. Сегментная организация памяти
- •89. Страничная организация памяти
- •90. Сегментно-страничная организация памяти
- •91. Последовательность выполнения .Exe файлов
- •Защита и восстановление ос Windows 2000. Архивация. Установочные дискеты. Безопасный режим загрузки.
- •93. Защита и восстановление ос Windows 2000. Консоль восстановления, диск аварийного восстановления. Резервное копирование и восстановление.
- •95. Общая характеристика системы unix. Интерфейсы системы и их характеристика.
- •96. Структура ядра системы unix. Состав и характеристика компонентов ядра.
- •Оболочка системы unix. Работа в оболочке. Командная строка. Основные команды работы с файлами, каналы, сценарии.
- •Команды по работе с файловой системой
- •Операционная система Windows 2000. Структура системы. Основные компоненты и их характеристика.
- •Операционная система Windows 2000. Уровень аппаратных абстракций. Функции уровня. Уровень ядра.
- •Технология аутентификации. Сетевая аутентификация на основе одноразового пароля.
71. Семафор Дейкстры.
Одним из первых механизмов, предложенных для синхронизации поведения процессов, стали семафоры, концепцию которых описал Дейкстра. Семафор представляет собой целую переменную, принимающую неотрицательные значения, доступ любого процесса к которой, за исключением момента ее инициализации, может осуществляться только через две атомарные операции: P и V. Классическое определение этих операций:
P(S): пока S== процесс блокируется;
S=S-1;
V(S): S=S+1;
Запись означает следующее: при выполнении операции Р над семафором S сначала проверяется его значение. Если оно больше 0, то из S вычитается 1. Если оно меньше или равно 0, то процесс блокируется до тех пор, пока S не станет больше 0, после чего из S вычитается 1. При выполнении операции V над семафором S к его значению прибавляется 1.
Подобные переменные-семафоры могут быть с успехом применены для решения различных задач организации взаимодействия процессов. В ряде языков программирования они были введены в синтаксис языка (ALGOL-68), в других случаях применяются путем использования системных вызовов. Соответствующая целая переменная располагается внутри адресного пространства ядра операционной системы. Операционная система обеспечивает атомарность операций P и V, используя, например, запрет прерываний на время выполнения соответствующих системных вызовов. Если при выполнении операции Р заблокированными оказались несколько процессов, то порядок их разблокирования может быть произвольным, например, FIFO.
Архитектура операционной системы
Архитектура операционной системы – структурная и функциональная ее организация на основе некоторой совокупности программных модулей. В состав ОС входят исполняемые и объектные модули специального формата (загрузчик ОС, драйверы ввода-вывода), конфигурационные файлы, файлы документации, модули справочной системы и т.д.
Принципы разработки архитектур ОС:
1. Концепция многоуровневой иерархической вычислительной системы (виртуальной машины) с ОС многослойной структуры.
2. Разделение модулей ОС по функциям на две группы: ядро – модули, выполняющие основные функции ОС, и модули, выполняющие остальные (вспомогательные) функции.
3. Разделение модулей ОС по размещению в памяти вычислительной системы: резидентные, постоянно находящиеся в оперативной памяти, и транзитные, загружаемые в оперативную память только на время выполнения своих функций.
4. Реализация двух режимов работы вычислительной системы: привилегированного режима (режима ядра) или режима супервизора и пользовательского режима или режима задача.
5. Ограничение функций ядра (а, следовательно и числа его модулей) до минимально необходимых функций.
6. Модульное строение (однократно используемые – при загрузке ОС) и повторно используемые (привилегированные – не допускают прерываний, реентерабельные – допускают прерывания и повторный запуск, повторновходимые – допускают прерывания после завершения секций).
7. Параметрическая универсальность. Возможность генерации ОС и создания нескольких рабочих конфигураций.
8. Функциональная избыточность.
9. Функциональная избирательность.
10. Открытость, модифицируемость, расширяемость (возможность получения текстов исходных модулей).
11. Мобильность – возможность переноса на различные аппаратные платформы.
12. Совместимость – возможность выполнения приложений, рассчитанных на другие ОС.
13. Безопасность – защита от несанкционированного доступа, защита легальных пользователей друг от друга, аудит, возможность восстановления ОС после сбоев и отказов.
Монолитная архитектура
Как правило, структура отсутствует
Многоуровневая архитектура
Между уровнями можно организовать четкий интерфейс.
Систему можно спроектировать методом «сверху вниз», а реализовать методом «снизу вверх».
Уровни реализуются в соответствии с их порядком, начиная с аппаратуры и далее вверх.
Микроядерная архитектура
Операционные системы, основанные на концепции микроядра