
- •Основные понятия, связанные с матрицами. Линейные операции над матрицами, умножение. Примеры
- •Обратная матрица, формула вычисления обратной матрицы. Примеры
- •Определители 3 и 2 порядка, определители n-го порядка. Свойства определителей, разложение определителя по элементам строки. Примеры
- •Метод Гаусса решения систем уравнений, примеры
- •Крамер.
- •Основные понятия связанные с векторами. Линейные операции в векторной и координатной форме
- •Определение скалярного произведения векторов, свойства, в ортонормированном базисе Скалярное произведение векторов – число равное произведению длин этих векторов на косинус угла между ними
- •Свойства: 1) произведение суммы двух векторов равно сумме проекций; 2) при умножении вектора на число его проекция то же умножается на это число;
- •Определение векторного произведения векторов, свойства, в ортонормированном базисе
- •Общее уравнение прямой второго порядка, окружность. Каноническое уравнение параболы, разновидности
- •Получить уравнение плоскости, проходящей через данную точку, перпендикулярно данному вектору.
- •Получить общее уравнение плоскости. Частные случаи
- •Уравнение плоскости, проходящей через 3 точки(получить).Примеры.
- •Получить уравнение плоскости в отрезках на осях
- •Формула для вычисления расстояния от точки до плоскости, нахождение угла между плоскостями. Условия параллельности и перпендикулярности а) Формула
- •Приведение обзих уравнений прямой в пространстве к каноническому виду
- •Нахождение точки пересечения прямой и плоскости
- •Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости
- •Функции синус, косинус и их графики, производные
- •Функции тангенс, котангенс, свойства графики производные
- •Функции арккосинус, арксинус
- •Функции арктангенс, арккотангенс Функция arctg
- •Свойства функции arctg
- •Получение функции arctg
- •Функция arcctg
- •Свойства функции arcctg
- •Получение функции arcctg
- •Показательные функции, логарифмические, степенные их свойства, графики, производные Показательная функция
- •Определение показательной функции
- •Свойства
- •Логарифмическая функция
- •Свойства
- •Померные координаты и их связь с декартовыми прямоугольными. Построение кривых в системе координат
- •Вывод уравнения прямой в плоскости проходящей через точку, перпендикулярно данному вектору
- •Получить общее уравнение прямой на плоскости и рассмотреть его частные случаи.
- •Определение бесконечно малой:
- •Свойства бесконечно малой функции:
- •Теорема о связи между функцией и её пределом в точке (не уверен, но вроде вполне подходит!):
- •Определение бб и ее связь с бм.
- •Теорема о пределе суммы, произведений, частного, двух функций, предельные переходы в неравенствах
- •Сравнение бм и бб. Теорема о замене функций на эквивалентные при вычислении пределов. Два замечательных предела
- •Раскрытие неопределенностей ; ;
- •В) Неопределённость «бесконечность минус бесконечность» и «ноль умножить на беконечность»
- •Определение непрерывности функции в точке и на отрезке, классификация точек разрыва, теорема о непрерывности
- •Свойства функций непрерывных в точке и на отрезке
- •О пределение производной, геометрический и физический смысл, вывод уравнения касательной и нормали к кривой
- •Определение функции дифференцируемой в точке. Необходимое и достаточное условие дифференцируемости функции
- •Правила вычисления производных. Таблица производных различных функций
- •Диференциал функции одной переменной. Инвариантность формы диференциала.Диференциал постоянного; суммы; произведения; частного.
- •Теоремы Ролля, Коши, Лагранжа.
- •Правило Лапиталя, пример раскрытия неопределенности с помощью правила Лапиталя
- •Комплексные числа. Различные формы комплексных чисел. Арифметические действия
- •Формула Тейлора с остаточным членом в форме Лагранжа ( Пеано)
- •Монотонные функции на интервале. Необходимый и достаточный признак монотонности. Пример исследования на монотонность
- •Условия монотонности функции
- •Примеры
- •Точки локального максимума (минимума) необходимое условие локального экстремума функции. Первый и второй достаточный признак локального экстремума
- •Нахождение наибольшего и наименьшего значения непрерывной функции
- •Определение точки перегиба функции. Достаточное условие существования точек перегиба.
- •Определение асимптот графика функции. Виды асимптот
- •Определение первообразной. Теорема о множестве первообразных. Определение неопределенного интеграла. Основные свойства, таблица интегралов
- •Интегрирование методом замены переменной. Формула интегрирования по частям. Случаи ее применения
- •Интегрирование простейших дробей 1-3 типов
- •Вычисление интегралов типа:
- •Вычисление интегралов вида: * dx
- •Вычисление интегралов вида
Общее уравнение прямой второго порядка, окружность. Каноническое уравнение параболы, разновидности
Общее уравнение кривой 2 порядка
,
рассматривается произведение
.
Если
, то эллипс;
Если
, то гипербола;
Если
, то парабола.
Окружность
Каноническое уравнение параболы.
Парабола(рис. 4.16)
Пусть
на плоскости заданы точка F и
прямая
,
не проходящая через F.
Парабола - множество всех тех
точек M плоскости,
каждая из которых равноудалена от
точки F и
прямой
.
Точка F называется
фокусом, прямая
-
директрисой параболы; (OF) -
ось, O -
вершина,
-
параметр,
-
фокус,
-
фокальный радиус.
Каноническое
уравнение:
Эксцентриситет:
Фокальный
радиус:
Уравнение
директрисы:
Получить уравнение плоскости, проходящей через данную точку, перпендикулярно данному вектору.
Найдем
уравнение плоскости, проходящей через
точку
перпендикулярно вектору
,
называемому нормалью к плоскости. Для
любой точки плоскости
вектор
ортогонален
(перпендикулярен) вектору
,
следовательно, их скалярное произведение
равно нулю:
или
.
Общее уравнение плоскости
После преобразования, уравнение
|
можно
записать в виде приняв
Уравнение плоскости в отрезках Если же общее уравнение плоскости является полным
(т.е. ни один из коэффициентов не равен нулю), то его можно преобразовать к виду, называемому уравнением плоскости в отрезках
координатных осях. |
Получить общее уравнение плоскости. Частные случаи
О п р е д е л е н и е 1. Общим уравнением плоскости называется линейное уравнение первой степени относительно трех переменных: х, у и z, т.е. уравнение вида Ax + By + Cz + D = 0. (3.21) Коэффициенты при х, у и z являются координатами вектора, который перпендикулярен плоскости (рис. 57). |
Рис. 57 |
О п р е д е л е н и е 2. Всякий вектор, перпендикулярный плоскости, называется нормальным вектором этой плоскости.
Если
известна фиксированная точка M0 (x0, y0, z0),
лежащая в данной плоскости, и вектор
,
перпендикулярный данной плоскости, то
уравнение плоскости, проходящей через
точку M0 (x0, y0, z0),
перпендикулярно вектору
,
имеет вид
A(x-x0)+ B(y-y0) + C(z-z0) = 0. (3.22)
Покажем, что уравнение (3.22) является общим уравнением плоскости (3.21). Для этого раскроем скобки и соберем в скобки свободный член:
Ax + By+ Cz + (-Ax0 - By -Cz0) = 0
ОбозначивD = -Ax0 - By -Cz0 , получим уравнение Ax + By + Cz + D = 0.
Задача
1. Составить
уравнение плоскости, проходящей через
точку А, перпендикулярно вектору
,
если A(4,
-3, 1), B(1,
2, 3).
Р
ешение. Найдем
нормальный вектор плоскости
:
.
Для нахождения уравнения плоскости используем уравнение (3.22):
Частные случаи общего уравнения плоскости:
1) By + Cz + D = 0 - параллельна оси Ox;
2) Ax + Cz + D = 0 - параллельна оси Oy;
3) Ax + By + D = 0 - параллельна оси Oz;
4) Cz + D = 0 - параллельна оси Oxy;
5) By + D = 0 - параллельна оси Oxz;
6) Ax + D = 0 - параллельна оси Oyz;
7) Ax + By + Cz = 0 - проходит через начало координат;
8) By + Cz = 0 - проходит через ось Ox;
9) Ax + Cz = 0 - проходит через ось Oy;
10) Ax + By = 0 - проходит через ось Oz;
11) z = 0 - плоскость Oxy;
12) y = 0 - плоскость Oxz;
13) x = 0 - плоскость Oyz.