
- •Основные понятия, связанные с матрицами. Линейные операции над матрицами, умножение. Примеры
- •Обратная матрица, формула вычисления обратной матрицы. Примеры
- •Определители 3 и 2 порядка, определители n-го порядка. Свойства определителей, разложение определителя по элементам строки. Примеры
- •Метод Гаусса решения систем уравнений, примеры
- •Крамер.
- •Основные понятия связанные с векторами. Линейные операции в векторной и координатной форме
- •Определение скалярного произведения векторов, свойства, в ортонормированном базисе Скалярное произведение векторов – число равное произведению длин этих векторов на косинус угла между ними
- •Свойства: 1) произведение суммы двух векторов равно сумме проекций; 2) при умножении вектора на число его проекция то же умножается на это число;
- •Определение векторного произведения векторов, свойства, в ортонормированном базисе
- •Общее уравнение прямой второго порядка, окружность. Каноническое уравнение параболы, разновидности
- •Получить уравнение плоскости, проходящей через данную точку, перпендикулярно данному вектору.
- •Получить общее уравнение плоскости. Частные случаи
- •Уравнение плоскости, проходящей через 3 точки(получить).Примеры.
- •Получить уравнение плоскости в отрезках на осях
- •Формула для вычисления расстояния от точки до плоскости, нахождение угла между плоскостями. Условия параллельности и перпендикулярности а) Формула
- •Приведение обзих уравнений прямой в пространстве к каноническому виду
- •Нахождение точки пересечения прямой и плоскости
- •Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости
- •Функции синус, косинус и их графики, производные
- •Функции тангенс, котангенс, свойства графики производные
- •Функции арккосинус, арксинус
- •Функции арктангенс, арккотангенс Функция arctg
- •Свойства функции arctg
- •Получение функции arctg
- •Функция arcctg
- •Свойства функции arcctg
- •Получение функции arcctg
- •Показательные функции, логарифмические, степенные их свойства, графики, производные Показательная функция
- •Определение показательной функции
- •Свойства
- •Логарифмическая функция
- •Свойства
- •Померные координаты и их связь с декартовыми прямоугольными. Построение кривых в системе координат
- •Вывод уравнения прямой в плоскости проходящей через точку, перпендикулярно данному вектору
- •Получить общее уравнение прямой на плоскости и рассмотреть его частные случаи.
- •Определение бесконечно малой:
- •Свойства бесконечно малой функции:
- •Теорема о связи между функцией и её пределом в точке (не уверен, но вроде вполне подходит!):
- •Определение бб и ее связь с бм.
- •Теорема о пределе суммы, произведений, частного, двух функций, предельные переходы в неравенствах
- •Сравнение бм и бб. Теорема о замене функций на эквивалентные при вычислении пределов. Два замечательных предела
- •Раскрытие неопределенностей ; ;
- •В) Неопределённость «бесконечность минус бесконечность» и «ноль умножить на беконечность»
- •Определение непрерывности функции в точке и на отрезке, классификация точек разрыва, теорема о непрерывности
- •Свойства функций непрерывных в точке и на отрезке
- •О пределение производной, геометрический и физический смысл, вывод уравнения касательной и нормали к кривой
- •Определение функции дифференцируемой в точке. Необходимое и достаточное условие дифференцируемости функции
- •Правила вычисления производных. Таблица производных различных функций
- •Диференциал функции одной переменной. Инвариантность формы диференциала.Диференциал постоянного; суммы; произведения; частного.
- •Теоремы Ролля, Коши, Лагранжа.
- •Правило Лапиталя, пример раскрытия неопределенности с помощью правила Лапиталя
- •Комплексные числа. Различные формы комплексных чисел. Арифметические действия
- •Формула Тейлора с остаточным членом в форме Лагранжа ( Пеано)
- •Монотонные функции на интервале. Необходимый и достаточный признак монотонности. Пример исследования на монотонность
- •Условия монотонности функции
- •Примеры
- •Точки локального максимума (минимума) необходимое условие локального экстремума функции. Первый и второй достаточный признак локального экстремума
- •Нахождение наибольшего и наименьшего значения непрерывной функции
- •Определение точки перегиба функции. Достаточное условие существования точек перегиба.
- •Определение асимптот графика функции. Виды асимптот
- •Определение первообразной. Теорема о множестве первообразных. Определение неопределенного интеграла. Основные свойства, таблица интегралов
- •Интегрирование методом замены переменной. Формула интегрирования по частям. Случаи ее применения
- •Интегрирование простейших дробей 1-3 типов
- •Вычисление интегралов типа:
- •Вычисление интегралов вида: * dx
- •Вычисление интегралов вида
Нахождение наибольшего и наименьшего значения непрерывной функции
НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ НА ОТРЕЗКЕ
Наибольшим значением функции на отрезке называется самое большое из всех ее значений на этом отрезке, а наименьшим – самое маленькое из всех ее значений.
Рассмотрим функцию y=f(x) непрерывную на отрезке [a, b]. Как известно, такая функция достигает своего наибольшего и наименьшего значений, либо на границе отрезка, либо внутри него. Если наибольшее или наименьшее значение функции достигается во внутренней точке отрезка, то это значение является максимумом или минимумом функции, то есть достигается в критических точках.
Таким образом, получаем следующее правило нахождения наибольшего и наименьшего значений функции на отрезке[a, b]:
Найти все критические точки функции в интервале (a, b) и вычислить значения функции в этих точках.
Вычислить значения функции на концах отрезка при x = a, x = b.
Из всех полученных значений выбрать наибольшее и наименьшее.
Примеры.
Найти наибольшее и наименьшее значения функции
на отрезке [–2; –0,5].
Найдем критические точки
функции.
Вычислим значения функции в найденной точке и на концах заданного отрезка.
Итак,
Найти наибольшее и наименьшее значения функцииy=x-2·ln x на [1; e].
Чему равна наименьшая площадь боковой поверхности прямого кругового конуса объема 3π?
По теореме Пифагора
.
Следовательно,
.
.
Найдем критические точки
функции S: S'
= 0, т.е.
Покажем, что при найденном значении h функция Sбок достигает минимума.
.
Н
айти
радиус основания и высоту цилиндра
наибольшего объема, который можно
вписать в шар радиусом R.
Пусть r – радиус основания цилиндра, h – высота.
Нам нужно максимизировать
объем цилиндра
.
Используя условие задачи,
найдем связь между r и h.
По теореме Пифагора из треугольника ABC следует,
что
.
Отсюда
.
,
по смыслу задачи 0≤h≤2R.
.
Покажем, что при найденном значении h функция V принимает наибольшее значение.
Определение выпуклой, вогнутой функции. Необходимое и достаточное условие выпуклости\вогнутости графика функции
График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале. График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале. На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c). Примеры.
Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым. Теорема. Пусть y=f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f''(x) < 0, то график функции на этом интервале выпуклый, если же f''(x) > 0 – вогнутый.
Доказательство. Предположим для определенности, что f''(x) < 0 и докажем, что график функции будет выпуклым. Возьмем
на графике функции y
= f(x) произвольную
точку M0 с
абсциссой x0 (a; b)
и проведем через точку M0 касательную.
Ее уравнение |
|
Итак,
уравнение кривой имеет вид y
= f(x).
Обозначим
ординату
касательной, соответствующую абсциссе x.
Тогда
.
Следовательно, разность ординат кривой
и касательной при одном и том же
значении x будет
.
Разность f(x)
– f(x0) преобразуем
по теореме Лагранжа
,
где c между x и x0.
Таким образом,
.
К
выражению, стоящему в квадратных скобках
снова применим теорему Лагранжа:
,
где c1 между c0 и x0.
По условию теоремы f ''(x)
< 0. Определим знак произведения второго
и третьего сомножителей.
Предположим, что x>x0. Тогда x0<c1<c<x, следовательно, (x – x0) > 0 и (c – x0) > 0. Поэтому
.
Пусть x<x0, следовательно, x < c < c1 < x0 и (x – x0) < 0, (c – x0) < 0. Поэтому вновь .
Таким образом, любая точка кривой лежит ниже касательной к кривой при всех значениях x и x0 (a; b), а это значит, что кривая выпукла. Вторая часть теоремы доказывается аналогично.
Примеры.
Установить интервалы выпуклости и вогнутости кривой y = 2 – x2.
Найдем y '' и определим, где вторая производная положительна и где отрицательна. y' = –2x, y'' = –2 < 0 на (–∞; +∞), следовательно, функция всюду выпукла.
y = ex. Так как y'' = ex > 0 при любых x, то кривая всюду вогнута.
y = x3. Так как y'' = 6x, то y'' < 0 при x < 0 и y'' > 0 при x > 0. Следовательно, при x < 0 кривая выпукла, а при x > 0 вогнута.