
- •Основные понятия, связанные с матрицами. Линейные операции над матрицами, умножение. Примеры
- •Обратная матрица, формула вычисления обратной матрицы. Примеры
- •Определители 3 и 2 порядка, определители n-го порядка. Свойства определителей, разложение определителя по элементам строки. Примеры
- •Метод Гаусса решения систем уравнений, примеры
- •Крамер.
- •Основные понятия связанные с векторами. Линейные операции в векторной и координатной форме
- •Определение скалярного произведения векторов, свойства, в ортонормированном базисе Скалярное произведение векторов – число равное произведению длин этих векторов на косинус угла между ними
- •Свойства: 1) произведение суммы двух векторов равно сумме проекций; 2) при умножении вектора на число его проекция то же умножается на это число;
- •Определение векторного произведения векторов, свойства, в ортонормированном базисе
- •Общее уравнение прямой второго порядка, окружность. Каноническое уравнение параболы, разновидности
- •Получить уравнение плоскости, проходящей через данную точку, перпендикулярно данному вектору.
- •Получить общее уравнение плоскости. Частные случаи
- •Уравнение плоскости, проходящей через 3 точки(получить).Примеры.
- •Получить уравнение плоскости в отрезках на осях
- •Формула для вычисления расстояния от точки до плоскости, нахождение угла между плоскостями. Условия параллельности и перпендикулярности а) Формула
- •Приведение обзих уравнений прямой в пространстве к каноническому виду
- •Нахождение точки пересечения прямой и плоскости
- •Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости
- •Функции синус, косинус и их графики, производные
- •Функции тангенс, котангенс, свойства графики производные
- •Функции арккосинус, арксинус
- •Функции арктангенс, арккотангенс Функция arctg
- •Свойства функции arctg
- •Получение функции arctg
- •Функция arcctg
- •Свойства функции arcctg
- •Получение функции arcctg
- •Показательные функции, логарифмические, степенные их свойства, графики, производные Показательная функция
- •Определение показательной функции
- •Свойства
- •Логарифмическая функция
- •Свойства
- •Померные координаты и их связь с декартовыми прямоугольными. Построение кривых в системе координат
- •Вывод уравнения прямой в плоскости проходящей через точку, перпендикулярно данному вектору
- •Получить общее уравнение прямой на плоскости и рассмотреть его частные случаи.
- •Определение бесконечно малой:
- •Свойства бесконечно малой функции:
- •Теорема о связи между функцией и её пределом в точке (не уверен, но вроде вполне подходит!):
- •Определение бб и ее связь с бм.
- •Теорема о пределе суммы, произведений, частного, двух функций, предельные переходы в неравенствах
- •Сравнение бм и бб. Теорема о замене функций на эквивалентные при вычислении пределов. Два замечательных предела
- •Раскрытие неопределенностей ; ;
- •В) Неопределённость «бесконечность минус бесконечность» и «ноль умножить на беконечность»
- •Определение непрерывности функции в точке и на отрезке, классификация точек разрыва, теорема о непрерывности
- •Свойства функций непрерывных в точке и на отрезке
- •О пределение производной, геометрический и физический смысл, вывод уравнения касательной и нормали к кривой
- •Определение функции дифференцируемой в точке. Необходимое и достаточное условие дифференцируемости функции
- •Правила вычисления производных. Таблица производных различных функций
- •Диференциал функции одной переменной. Инвариантность формы диференциала.Диференциал постоянного; суммы; произведения; частного.
- •Теоремы Ролля, Коши, Лагранжа.
- •Правило Лапиталя, пример раскрытия неопределенности с помощью правила Лапиталя
- •Комплексные числа. Различные формы комплексных чисел. Арифметические действия
- •Формула Тейлора с остаточным членом в форме Лагранжа ( Пеано)
- •Монотонные функции на интервале. Необходимый и достаточный признак монотонности. Пример исследования на монотонность
- •Условия монотонности функции
- •Примеры
- •Точки локального максимума (минимума) необходимое условие локального экстремума функции. Первый и второй достаточный признак локального экстремума
- •Нахождение наибольшего и наименьшего значения непрерывной функции
- •Определение точки перегиба функции. Достаточное условие существования точек перегиба.
- •Определение асимптот графика функции. Виды асимптот
- •Определение первообразной. Теорема о множестве первообразных. Определение неопределенного интеграла. Основные свойства, таблица интегралов
- •Интегрирование методом замены переменной. Формула интегрирования по частям. Случаи ее применения
- •Интегрирование простейших дробей 1-3 типов
- •Вычисление интегралов типа:
- •Вычисление интегралов вида: * dx
- •Вычисление интегралов вида
Формула Тейлора с остаточным членом в форме Лагранжа ( Пеано)
Формула Тейлора используется при доказательстве большого числа теорем в дифференциальном исчислении. Говоря нестрого, формула Тейлора показывает поведение функции в окрестности некоторой точки.
Теорема:
-
Пусть функция
имеет
производную в некоторой окрестности точки ,
Пусть
Пусть
— произвольное положительное число,
тогда:
точка
при
или
при
:
Это формула Тейлора с остаточным членом в общей форме (форма Шлёмильха — Роша).
Различные формы остаточного члена
В форме Лагранжа:
Монотонные функции на интервале. Необходимый и достаточный признак монотонности. Пример исследования на монотонность
.Моното́ннаяфу́нкция — это функция, приращение которой не меняет знака, то есть либо всегда отрицательное, либо всегда положительное[1]. Если в дополнение приращение не равно нулю, то функция называется стро́гомоното́нной. Монотонная функция — это функция, меняющаяся в одном и том же направлении.
Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.
Пусть
дана функция
Тогда
функция называется возраста́ющей на
, если
.
функция называется стро́говозраста́ющей на , если
.
функция называется убыва́ющей на , если
.
функция называется стро́гоубыва́ющей на , если
.
(Строго) возрастающая или убывающая функция называется (строго) монотонной.
Условия монотонности функции
(Критерий монотонности функции, имеющей производную на интервале) Пусть функция
непрерывна на
и имеет в каждой точке
производную
Тогда
не
убывает на
тогда
и только тогда, когда
не
возрастает на
тогда
и только тогда, когда
(Достаточное условие строгой монотонности функции, имеющей производную на интервале) Пусть функция непрерывна на и имеет в каждой точке производную Тогда
если
то
строго
возрастает на
если
то
строго
убывает на
Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль. Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место
(Критерий строгой монотонности функции, имеющей производную на интервале) Пусть
и всюду на интервале определена производная Тогда строго возрастает на интервале тогда и только тогда, когда выполнены следующие два условия:
Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:
Примеры
Экспонента
строго возрастает на всей числовой прямой.
Парабола
строго убывает на
и строго возрастает на
.
Константа
одновременно невозрастает и неубывает на всей числовой прямой.
Канторова лестница — пример непрерывной монотонной функции, которая не является константой, но при этом имеет производную равную нулю в почти всех точках.
Функция Минковского — пример сингулярной строго возрастающей функции.