
- •Основные понятия, связанные с матрицами. Линейные операции над матрицами, умножение. Примеры
- •Обратная матрица, формула вычисления обратной матрицы. Примеры
- •Определители 3 и 2 порядка, определители n-го порядка. Свойства определителей, разложение определителя по элементам строки. Примеры
- •Метод Гаусса решения систем уравнений, примеры
- •Крамер.
- •Основные понятия связанные с векторами. Линейные операции в векторной и координатной форме
- •Определение скалярного произведения векторов, свойства, в ортонормированном базисе Скалярное произведение векторов – число равное произведению длин этих векторов на косинус угла между ними
- •Свойства: 1) произведение суммы двух векторов равно сумме проекций; 2) при умножении вектора на число его проекция то же умножается на это число;
- •Определение векторного произведения векторов, свойства, в ортонормированном базисе
- •Общее уравнение прямой второго порядка, окружность. Каноническое уравнение параболы, разновидности
- •Получить уравнение плоскости, проходящей через данную точку, перпендикулярно данному вектору.
- •Получить общее уравнение плоскости. Частные случаи
- •Уравнение плоскости, проходящей через 3 точки(получить).Примеры.
- •Получить уравнение плоскости в отрезках на осях
- •Формула для вычисления расстояния от точки до плоскости, нахождение угла между плоскостями. Условия параллельности и перпендикулярности а) Формула
- •Приведение обзих уравнений прямой в пространстве к каноническому виду
- •Нахождение точки пересечения прямой и плоскости
- •Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости
- •Функции синус, косинус и их графики, производные
- •Функции тангенс, котангенс, свойства графики производные
- •Функции арккосинус, арксинус
- •Функции арктангенс, арккотангенс Функция arctg
- •Свойства функции arctg
- •Получение функции arctg
- •Функция arcctg
- •Свойства функции arcctg
- •Получение функции arcctg
- •Показательные функции, логарифмические, степенные их свойства, графики, производные Показательная функция
- •Определение показательной функции
- •Свойства
- •Логарифмическая функция
- •Свойства
- •Померные координаты и их связь с декартовыми прямоугольными. Построение кривых в системе координат
- •Вывод уравнения прямой в плоскости проходящей через точку, перпендикулярно данному вектору
- •Получить общее уравнение прямой на плоскости и рассмотреть его частные случаи.
- •Определение бесконечно малой:
- •Свойства бесконечно малой функции:
- •Теорема о связи между функцией и её пределом в точке (не уверен, но вроде вполне подходит!):
- •Определение бб и ее связь с бм.
- •Теорема о пределе суммы, произведений, частного, двух функций, предельные переходы в неравенствах
- •Сравнение бм и бб. Теорема о замене функций на эквивалентные при вычислении пределов. Два замечательных предела
- •Раскрытие неопределенностей ; ;
- •В) Неопределённость «бесконечность минус бесконечность» и «ноль умножить на беконечность»
- •Определение непрерывности функции в точке и на отрезке, классификация точек разрыва, теорема о непрерывности
- •Свойства функций непрерывных в точке и на отрезке
- •О пределение производной, геометрический и физический смысл, вывод уравнения касательной и нормали к кривой
- •Определение функции дифференцируемой в точке. Необходимое и достаточное условие дифференцируемости функции
- •Правила вычисления производных. Таблица производных различных функций
- •Диференциал функции одной переменной. Инвариантность формы диференциала.Диференциал постоянного; суммы; произведения; частного.
- •Теоремы Ролля, Коши, Лагранжа.
- •Правило Лапиталя, пример раскрытия неопределенности с помощью правила Лапиталя
- •Комплексные числа. Различные формы комплексных чисел. Арифметические действия
- •Формула Тейлора с остаточным членом в форме Лагранжа ( Пеано)
- •Монотонные функции на интервале. Необходимый и достаточный признак монотонности. Пример исследования на монотонность
- •Условия монотонности функции
- •Примеры
- •Точки локального максимума (минимума) необходимое условие локального экстремума функции. Первый и второй достаточный признак локального экстремума
- •Нахождение наибольшего и наименьшего значения непрерывной функции
- •Определение точки перегиба функции. Достаточное условие существования точек перегиба.
- •Определение асимптот графика функции. Виды асимптот
- •Определение первообразной. Теорема о множестве первообразных. Определение неопределенного интеграла. Основные свойства, таблица интегралов
- •Интегрирование методом замены переменной. Формула интегрирования по частям. Случаи ее применения
- •Интегрирование простейших дробей 1-3 типов
- •Вычисление интегралов типа:
- •Вычисление интегралов вида: * dx
- •Вычисление интегралов вида
Свойства
Функция непрерывна и неограниченно дифференцируема во всех точках, в окрестности которых она определена. Нуль, вообще говоря, является особой точкой; например, функция
определена в нуле и его правой окрестности, но её производная
в нуле не определена.
В интервале
функция монотонно возрастает при и монотонно убывает при
Значения функции в этом интервале положительны.
Производная функции:
Неопределённый интеграл:
Если
, то
При получаем:
Производная: (xn)’=nxn-1
Померные координаты и их связь с декартовыми прямоугольными. Построение кривых в системе координат
Вывод уравнения прямой в плоскости проходящей через точку, перпендикулярно данному вектору
Получить общее уравнение прямой на плоскости и рассмотреть его частные случаи.
Определение бесконечно малой:
Бесконечно малая (величина) — числовая функция или последовательность, которая стремится к нулю.
Последовательность
называется бесконечно
малой,
если
.
Например, последовательность чисел
—
бесконечно малая.
Функция y=f(x)
называется бесконечно
малой в окрестности точки
если
.
Функция
называется бесконечно
малой на бесконечности,
если
либо
.
Свойства бесконечно малой функции:
Сумма конечного числа бесконечно малых — бесконечно малая.
Произведение бесконечно малых — бесконечно малая.
Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.
Если функция имеет предел при
, то она ограничена на бесконечном интервале.
Если — бесконечно малая последовательность, сохраняющая знак, то
— бесконечно большая последовательность.
Теорема о связи между функцией и её пределом в точке (не уверен, но вроде вполне подходит!):
Допустим, у нас есть
бесконечно малые при одном и том
же
величины
и
(либо,
что не важно для определения, бесконечно
малые последовательности).
Если
, то
— бесконечно малая высшего порядка малости, чем . Обозначают
.
Если
, то — бесконечно малая низшего порядка малости, чем . Соответственно
.
Если
(предел конечен и не равен 0), то и являются бесконечно малыми величинами одного порядка малости.
Это обозначается
как
или
(в
силу симметричности данного отношения).
Если
(предел конечен и не равен 0), то бесконечно малая величина имеет
-й порядок малости относительно бесконечно малой .
Для вычисления подобных пределов удобно использовать правило Лопиталя.
Определение бб и ее связь с бм.
Определение бесконечно большой функции:
Бесконечно большая (величина) — числовая функция или последовательность, которая стремится к бесконечности определённого знака.
Последовательность
называется бесконечно
большой,
если
.
Функция
называется бесконечно
большой в окрестности точки
,
если
.
Функция
называется бесконечно
большой на бесконечности,
если
либо
.
Связь между бесконечно малой и бесконечно большой:
Е
сли
функция y=f(x)
- есть бесконечно большая при xx0,
то функция y=1/f(x)
- есть бесконечно малая при
xx0