
- •1.Закономерности излучения черного тела. Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
- •2.Энергия и импульс фотона. Формула Планка для спектра излучения черного тела.
- •3.Квантовая теория фотоэффекта. Эффект Комптона.
- •4.Давление света. Опыты, подтверждающие давление света. Корпускулярно-волновой дуализм излучения.
- •6.Волновой пакет микрочастицы. Соотношение неопределенностей Гейзенберга.
- •7.Опыты Резерфорда по рассеянию -частиц. Формула Резерфорда. Модель атома Резерфорда-Бора.
- •8.Закономерности в спектрах атома водорода. Серии Лаймана, Бальмера, Пашена. Комбинационный принцип Ритца.
- •9.Дискретность квантовых состояний атома. Постулаты Бора. Опыты Франка-Герца.
- •10.Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
- •11.Принцип работы лазера. Типы лазеров. Свойства лазерного излучения.
- •12. Волновая функция микрочастицы и ее свойства. Стационарное и нестационарное уравнение Шредингера.
- •13. Решение уравнения Шредингера для свободной микрочастицы и находящейся в потенциальной яме.
- •14. Прохождение микрочастицы через потенциальный барьер. Туннельный эффект.
- •15. Гармонический осциллятор. Квантомеханическое описание атома водорода.
- •16. Уровни энергии и схема термов щелочных металлов. Дублетная структура спектров щелочных металлов.
- •17. Магнитный и механический моменты электронов. Спин. Опыты Штерна и Герлаха.
- •18. Результирующий механический момент многоэлектронного атома. J-j и l-s связь.
- •19. Нормальный и аномальный эффекты Зеемана. Фактор Ланде.
- •20. Электронные оболочки атома и их заполнение. Принцип Паули. Правила Хунда.
- •21. Тормозное и характеристическое рентгеновское излучение. Закон Мозли.
- •22. Физические особенности в молекулярных спектрах. Энергия и спектр двухатомной молекулы. P-, q- и r-ветви.
- •23. Одномерный кристалл Кронига-Пенни. Понятие о зонной теории твердых тел. Распределения Ферми-Дирака и Бозе-Эйнштейна. Фермионы и бозоны.
- •26.Свойства и характеристика ядер. Нейтрон и протон, их свойства. Энергия связи ядра.
- •27.Свойства и модель ядерных сил. Капельная модель ядра. Формула Вейцзеккера для энергии связи. Оболочечная модель ядра.
- •28. Искусственная и естественная радиоактивность. Основной закон радиоактивного распада. Активность. Правила смещения.
- •29. Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
- •35.Источники и методы регистрации элементарных частиц. Типы взаимодействий и классы элементарных частиц. Античастицы.
- •37.Физическое, химическое и биологическое воздействие ионизирующего излучения.
10.Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
Спонтанные переходы — самопроизвольные излучательные квантовые переходы из верхнего энергетического состояния в нижнее. Электромагнитное поле спонтанного излучения характеризуется тремя параметрами: центральной частотой спектральной линии , спектральной плотностью излучения Sv и мощностью излучения.
С нижнего уровня на верхний по закону сохранения энергии переходы возможны только с поглощением кванта энергии, т. е. под влиянием излучения, падающего на атом. Такие переходы называются вынужденными.
Коэффициенты Эйнштейна характеризуют вероятности излучат. квантовых переходов. Введены Эйнштейном при рассмотрении теории испускания и поглощения излучения атомами и молекулами на основе представления о фотонах; при этом им впервые была высказана идея существования вынужденного излучения. Вероятности спонтанного испускания поглощения и вынужденного испускания характеризуются соответственно коэфф. Aki, Bik и Bki (индексы указывают на направление перехода между верхним k и нижним i уровнями энергии).
Спектральная плотность излучения — характеристика спектра излучения, равная отношению интенсивности плотности потока излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению.
Энергия светового пучка неравномерно распределена по волнам различных длин. Зависимость частоты от длины волны описывается как λv=c.
Для характеристики распределения излучения по частотам используют интенсивность, приходящуюся на единичный интервал частот. Эта величина называется спектральной плотностью интенсивности излучения и обозначается как I(v).
Различным видимым цветам соответствуют различные спектральные плотности видимого света.
11.Принцип работы лазера. Типы лазеров. Свойства лазерного излучения.
Лазер- усиление света посредством вынужденного излучения, оптический квантовый генератор — устройство, преобразующее энергию накачки световую, электрическую, тепловую, химическую и др. в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.
Виды лазеров:
Твердотельные лазеры на люминесцирующих твёрдых средах диэлектрические кристаллы и стёкла. В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырёхуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах.
Полупроводниковые лазеры. Формально также являются твердотельными, но традиционно выделяются в отдельную группу, поскольку имеют иной механизм накачки инжекция избыточных носителей заряда через p-n переход или гетеропереход, электрический пробой в сильном поле, бомбардировка быстрыми электронами, а квантовые переходы происходят между разрешёнными энергетическими зонами, а не между дискретными уровнями энергии. Полупроводниковые лазеры — наиболее употребительный в быту вид лазеров.
Лазеры на красителях. Тип лазеров, использующий в качестве активной среды раствор флюоресцирующих с образованием широких спектров органических красителей. Лазерные переходы осуществляются между различными колебательными подуровнями первого возбуждённого и основного синглетных электронных состояний. Накачка оптическая, могут работать в непрерывном и импульсном режимах. Основной особенностью является возможность перестройки длины волны излучения в широком диапазоне.
Газовые лазеры — лазеры, активной средой которых является смесь газов и паров. Отличаются высокой мощностью, монохроматичностью, а также узкой направленностью излучения. Работают в непрерывном и импульсном режимах.
Газодинамические лазеры — газовые лазеры с тепловой накачкой, инверсия населённостей в которых создаётся между возбуждёнными колебательно-вращательными уровнями гетероядерных молекул путём адиабатического расширения движущейся с высокой скоростью газовой смеси чаще N2+CO2+He или N2+CO2+Н2О, рабочее вещество — CO2.
Эксимерные лазеры — разновидность газовых лазеров, работающих на энергетических переходах эксимерных молекул димерах благородных газов, а также их моногалогенидов, способных существовать лишь некоторое время в возбуждённом состоянии. Накачка осуществляется пропусканием через газовую смесь пучка электронов, под действием которых атомы переходят в возбуждённое состояние с образованием эксимеров, фактически представляющих собой среду с инверсией населённостей.
Химические лазеры — разновидность лазеров, источником энергии для которых служат химические реакции между компонентами рабочей среды смеси газов. Лазерные переходы происходят между возбуждёнными колебательно-вращательными и основными уровнями составных молекул продуктов реакции.
Лазеры на свободных электронах — лазеры, активной средой которых является поток свободных электронов, колеблющихся во внешнем электромагнитном поле за счёт чего осуществляется излучение и распространяющихся с релятивистской скоростью в направлении излучения. Основной особенностью является возможность плавной широкодиапазонной перестройки частоты генерации.
Волоконный лазер — лазер, резонатор которого построен на базе оптического волокна, внутри которого полностью или частично генерируется излучение. При полностью волоконной реализации такой лазер называется цельноволоконным, при комбинированном использовании волоконных и других элементов в конструкции лазера он называется волоконно-дискретным или гибридным.
Вертикально-излучающие лазеры VCSEL — Поверхностно-излучающий лазер с вертикальным резонатором — разновидность диодного полупроводникового лазера, излучающего свет в направлении, перпендикулярном поверхности кристалла, в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности пластин.