
- •1.Закономерности излучения черного тела. Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
- •2.Энергия и импульс фотона. Формула Планка для спектра излучения черного тела.
- •3.Квантовая теория фотоэффекта. Эффект Комптона.
- •4.Давление света. Опыты, подтверждающие давление света. Корпускулярно-волновой дуализм излучения.
- •6.Волновой пакет микрочастицы. Соотношение неопределенностей Гейзенберга.
- •7.Опыты Резерфорда по рассеянию -частиц. Формула Резерфорда. Модель атома Резерфорда-Бора.
- •8.Закономерности в спектрах атома водорода. Серии Лаймана, Бальмера, Пашена. Комбинационный принцип Ритца.
- •9.Дискретность квантовых состояний атома. Постулаты Бора. Опыты Франка-Герца.
- •10.Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
- •11.Принцип работы лазера. Типы лазеров. Свойства лазерного излучения.
- •12. Волновая функция микрочастицы и ее свойства. Стационарное и нестационарное уравнение Шредингера.
- •13. Решение уравнения Шредингера для свободной микрочастицы и находящейся в потенциальной яме.
- •14. Прохождение микрочастицы через потенциальный барьер. Туннельный эффект.
- •15. Гармонический осциллятор. Квантомеханическое описание атома водорода.
- •16. Уровни энергии и схема термов щелочных металлов. Дублетная структура спектров щелочных металлов.
- •17. Магнитный и механический моменты электронов. Спин. Опыты Штерна и Герлаха.
- •18. Результирующий механический момент многоэлектронного атома. J-j и l-s связь.
- •19. Нормальный и аномальный эффекты Зеемана. Фактор Ланде.
- •20. Электронные оболочки атома и их заполнение. Принцип Паули. Правила Хунда.
- •21. Тормозное и характеристическое рентгеновское излучение. Закон Мозли.
- •22. Физические особенности в молекулярных спектрах. Энергия и спектр двухатомной молекулы. P-, q- и r-ветви.
- •23. Одномерный кристалл Кронига-Пенни. Понятие о зонной теории твердых тел. Распределения Ферми-Дирака и Бозе-Эйнштейна. Фермионы и бозоны.
- •26.Свойства и характеристика ядер. Нейтрон и протон, их свойства. Энергия связи ядра.
- •27.Свойства и модель ядерных сил. Капельная модель ядра. Формула Вейцзеккера для энергии связи. Оболочечная модель ядра.
- •28. Искусственная и естественная радиоактивность. Основной закон радиоактивного распада. Активность. Правила смещения.
- •29. Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
- •35.Источники и методы регистрации элементарных частиц. Типы взаимодействий и классы элементарных частиц. Античастицы.
- •37.Физическое, химическое и биологическое воздействие ионизирующего излучения.
28. Искусственная и естественная радиоактивность. Основной закон радиоактивного распада. Активность. Правила смещения.
Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов.
Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.
Основной закон радиоактивного распада:
N=
где N — число нераспавшихся атомов в момент времени t; N0— число нераспавшихся атомов в момент, принятый за начальный (при t=0); е — основание натуральных логарифмов; λ — постоянная радиоактивного распада.
Активность А нуклида в радиоактивном источнике (активность изотопа) есть величина, равная отношению числа dN ядер, распавшихся в изотопе, к промежутку времени dt, за которое произошел распад. Активность определяется по формуле:
A = -dN/dt = λN
29. Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
В общем виде формула альфа-распада выглядит следующем образом:
Пример
альфа-распада для изотоп
:
Туннельный эффект - преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное в классической механике и даже полностью противоречащее ей.
Альфа-излучение представляет собой поток ядер гелия с низкой проникающей и высокой ионизирующей способностью. Пробег α-частиц незначителен: в ткани человеческого тела они проникают на десятые или сотые доли миллиметра
30. β-распад
Беккерель доказал, что β-лучи являются потоком электронов. β-распад — это проявление слабого взаимодействия.
β-распад (точнее,
бета-минус-распад,
-распад) —
это радиоактивный распад, сопровождающийся
испусканием из ядра электрона
и антинейтрино.
β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:
Правило смещения Содди для -распада:
Пример:
После -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.
Существуют также другие типы бета-распада. В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и нейтрино. При этом заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева). Позитронный распад всегда сопровождается конкурирующим процессом — электронным захватом (когда ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу). Однако обратное неверно: многие нуклиды, для которых позитронный распад запрещён, испытывают электронный захват. Наиболее редким из известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для десяти нуклидов, и периоды полураспадов превышают 1019 лет. Все типы бета-распада сохраняют массовое число ядра.
Нейтри́но (итал. neutrino — нейтрончик, уменьшительное от neutrone — нейтрон) — нейтральная фундаментальная частица с полуцелым спином, участвующая только в слабом и гравитационном взаимодействиях.
Свойства: Каждому заряженному лептону соответствует своя пара нейтрино/антинейтрино: 1)электронное нейтрино/электронное антинейтрино; 2)мюонное нейтрино/мюонное антинейтрино 3)тау-нейтрино/анти-тау-нейтрино
Электро́нный захва́т, e-захват — один из видов бета-распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается внейтрон, испуская электронное нейтрино. Заряд ядра при этом уменьшается на единицу. Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Этот процесс характерен для протонноизбыточных ядер. Если энергетическая разница между родительским и дочерним атомом (доступная энергия бета-распада) превышает 1,022 МэВ (удвоенную массу электрона), электронный захват всегда конкурирует с другим типом бета-распада, позитронным распадом. Например, рубидий-83 превращается в криптон-83 только посредством электронного захвата (доступная энергия около 0,9 МэВ), тогда как натрий-22 распадается в неон-22 посредством как электронного захвата, так и позитронного распада (доступная энергия около 2,8 МэВ).
Поскольку число протонов в ядре (т.е. заряд ядра) при электронном захвате уменьшается, этот процесс превращает ядро одного химического элемента в ядро другого элемента, расположенного ближе к началу таблицы Менделеева.
Общая формула электронного захвата
Примеры:
32.Получение трансурановых элементов. Основные закономерности реакций деления ядер.ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ, химические элементы, расположенные в периодической системе после урана, то есть с атомным номером Z 92.Все трансурановые элементы синтезированы с помощью ядерных реакций в природе обнаружены только микроколичества Np и Pu. Получение трансурановых элементов является сложной технической задачей. Основная трудность связана с конкуренцией реакций образования трансуранов и реакции деления, тем более сильной, чем тяжелее изотоп. Для получения золей трансурановых элементов твердые иониты не применяются в качестве конвергирующих реагентов, очевидно, из-за поглощения ими части металла. Однако они используются для приготовления микрочастиц окислов путем сжигания смолы, на которой сорбированы трансураниды.Ядерная реакция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, часто приводящий к выделению колоссального количества энергии. При протекании ядерных реакций выполняются следующие законы: сохранения электрического заряда и числа нуклонов, сохранения энергии и импульса, сохранения момента импульса, сохранения четности и изотопического спина.Деление ядра— процесс расщепления _ядро"атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном -частица"альфа-частицы), нейтроны и -квант"гамма-кванты. Деление бывает _деление"спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Реакция синтеза — реакция слияния лёгких ядер в одно. Эта реакция происходит только при высоких температурах, порядка 108 К и называется термоядерной реакцией.Энергетическим выходом реакции Q называется разность между суммарными энергиями покоя всех частиц до и после ядерной реакции. Если Q 0, то суммарная энергия покоя уменьшается в процессе ядерной реакции. Такие ядерные реакции называются экзоэнергетическими. Они могут протекать при сколь угодно малой начальной кинетической энергии частиц. Наоборот, при Q 1 идет развивающаяся реакция, число делений непрерывно растет и реакция может стать взрывной. При k=1 идет самоподдерживающаяся реакция, при которой число нейтронов с течением времени не изменяется.
33.Цепная реакция деления. Управляемая цепная реакция. Ядерный реактор. Цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k ³ 1.
Ядерный реактор — это устройство, в котором осуществляется управляемая _ядерная_реакция"цепная ядерная реакция, сопровождающаяся выделением энергии.
34.Термоядерный синтез. Энергия звезд. Управляемый термоядерный синтез. Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые.Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний 10-15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами. Для возникновения реакции синтеза необходимо нагреть вещество большой плотности до сверхвысоких температур (порядка сотен миллионов Кельвин), чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновских сил отталкивания. При таких температурах вещество существует в виде плазмы. Поскольку синтез может происходить только при очень высоких температурах, ядерные реакции синтеза и получили название термоядерных реакций (от греч. therme "тепло, жар").Звёзды могут постоянно терять и получать энергию. Но механизм пополнения энергии становится ясен лишь в случае, если мы исходим из: 1) модели вращающейся вселенной, 2) осознания, что небесные тела – сложные системы, владеющие объемом и поверхностью, и что их нельзя разглядывать как точечные объекты. Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов). В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в _оружие"термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной _энергия"ядерной энергетики тем, что в последней используется _распад"реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных _реакция"ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий(2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).