
- •1.Закономерности излучения черного тела. Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
- •2.Энергия и импульс фотона. Формула Планка для спектра излучения черного тела.
- •3.Квантовая теория фотоэффекта. Эффект Комптона.
- •4.Давление света. Опыты, подтверждающие давление света. Корпускулярно-волновой дуализм излучения.
- •6.Волновой пакет микрочастицы. Соотношение неопределенностей Гейзенберга.
- •7.Опыты Резерфорда по рассеянию -частиц. Формула Резерфорда. Модель атома Резерфорда-Бора.
- •8.Закономерности в спектрах атома водорода. Серии Лаймана, Бальмера, Пашена. Комбинационный принцип Ритца.
- •9.Дискретность квантовых состояний атома. Постулаты Бора. Опыты Франка-Герца.
- •10.Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
- •11.Принцип работы лазера. Типы лазеров. Свойства лазерного излучения.
- •12. Волновая функция микрочастицы и ее свойства. Стационарное и нестационарное уравнение Шредингера.
- •13. Решение уравнения Шредингера для свободной микрочастицы и находящейся в потенциальной яме.
- •14. Прохождение микрочастицы через потенциальный барьер. Туннельный эффект.
- •15. Гармонический осциллятор. Квантомеханическое описание атома водорода.
- •16. Уровни энергии и схема термов щелочных металлов. Дублетная структура спектров щелочных металлов.
- •17. Магнитный и механический моменты электронов. Спин. Опыты Штерна и Герлаха.
- •18. Результирующий механический момент многоэлектронного атома. J-j и l-s связь.
- •19. Нормальный и аномальный эффекты Зеемана. Фактор Ланде.
- •20. Электронные оболочки атома и их заполнение. Принцип Паули. Правила Хунда.
- •21. Тормозное и характеристическое рентгеновское излучение. Закон Мозли.
- •22. Физические особенности в молекулярных спектрах. Энергия и спектр двухатомной молекулы. P-, q- и r-ветви.
- •23. Одномерный кристалл Кронига-Пенни. Понятие о зонной теории твердых тел. Распределения Ферми-Дирака и Бозе-Эйнштейна. Фермионы и бозоны.
- •26.Свойства и характеристика ядер. Нейтрон и протон, их свойства. Энергия связи ядра.
- •27.Свойства и модель ядерных сил. Капельная модель ядра. Формула Вейцзеккера для энергии связи. Оболочечная модель ядра.
- •28. Искусственная и естественная радиоактивность. Основной закон радиоактивного распада. Активность. Правила смещения.
- •29. Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
- •35.Источники и методы регистрации элементарных частиц. Типы взаимодействий и классы элементарных частиц. Античастицы.
- •37.Физическое, химическое и биологическое воздействие ионизирующего излучения.
21. Тормозное и характеристическое рентгеновское излучение. Закон Мозли.
Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В результате в энергию рентгеновского излучения переходят различные части их кинетической энергии. Спектр тормозного рентгеновского излучения не зависит от природы вещества анода. Как известно, энергия фотонов рентгеновских лучей определяет их частоту и длину волны. Поэтому тормозное рентгеновское излучение не является монохроматическим. Оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром. Рентгеновские лучи не могут иметь энергию большую, чем кинетическая энергия образующих их электронов. Наименьшая длина волны рентгеновского излучения соответствует максимальной кинетической энергии тормозящихся электронов. Чем больше разность потенциалов в рентгеновской трубке, тем меньшие длины волны рентгеновского излучения можно получить.
Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атомов и выбивает один из их электронов. В результате появляется свободное место, которое может быть заполнено другим электроном, спускающимся с одной из верхних атомных орбиталей. Такой переход электрона с более высокого на более низкий энергетический уровень вызывает рентгеновское излучение определенной дискретной длины волны. Поэтому характеристическое рентгеновское излучение имеет линейчатый спектр. Частота линий характеристического излучения полностью зависит от структуры электронных орбиталей атомов анода. Линии спектра характеристического излучения разных химических элементов имеют одинаковый вид, поскольку структура их внутренних электронных орбитальных идентична. Но длина их волны и частота, благодаря энергетическим различиям между внутренними орбиталями тяжелых и легких атомов. Частота линий спектра характеристического рентгеновского излучения изменяется в соответствие с атомным номером металла и определяется уравнением Мозли: v1/2=A(Z-B), где Z - атомный номер химического элемента, A и B - константы.
ЗАКОН МОЗЛИ утверждает, что корень квадратный из частоты v характеристич. рентг. излучения атома хим. элемента и его ат. номер Z связаны линейной зависимостью:
(Rс-
Ридберга постоянная, Sn -
постоянная экранирования,
учитывающая влияние на отд. электрон
всех остальных электронов атома, n -
гл. квантовое число). M. з. установлен
экспериментально в 1913 Г. Мозли (H.Moseley).
Графически зависимость
от Zпредставляет
собой ряд прямых (К-,
L-, M- и т. д.
серии, соответствующие n=1,2,3,...;
рис.). M. з. окончательно подтвердил,
что Zопределяется
не массой атомного ядра, а его зарядом.
Мозли закон - основа рентг. спектрального
анализа. А.
В. Колпаков.