
- •Топологические параметры цепи
- •Эквивалентные преобразования электрических цепей
- •Метод эквивалентных преобразований
- •Пример применения
- •Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
- •Резонансы в цепях синусоидального тока
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- •Резонанс в сложной цепи
- •20. Емкостной характер цепи синусоидального тока с параллельным соединением rlc — элементов.
- •Комплексный метод расчета цепей синусоидального тока
- •Переменный однофазный ток
- •Мощность
- •Коэффициент мощности
- •Аварийные режимы в нагрузках соединенных звездой
- •Аварийные режимы в нагрузках соединенных треугольником
- •Соединение в звезду. Схема, определения
- •Соединение в треугольник. Схема, определения
- •Соотношение между линейными и фазными токами и напряжениями.
- •Соотношения между фазными и линейными напряжениями источников. Номинальные напряжения
- •Измерение активной мощности в трехфазных цепях
- •Измерение активной мощности двумя ваттметрами
- •4.2. Магнитные цепи
- •Закон полного тока
- •Ток смещения
- •Магнитные цепи
- •9.1. Основные определения
- •9.2. Свойства ферромагнитных материалов
- •9.3. Расчет магнитных цепей
- •Общая характеристика задач и методов расчета магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •Статическая и дифференциальная индуктивности катушки с ферромагнитным сердечником
- •Магнитные характеристики атома
- •Устройство и принцип действия трансформатора
- •2. Механическая характеристика асинхронного двигателя
- •Работа трансформатора в режиме холостого хода
- •Опыт короткого замыкания трансформатора
- •[Править]Типы
- •[Править]Принцип действия
- •[Править]Электродвигатель
- •[Править]Генератор
- •11.2. Принцип действия машины постоянного тока
- •11.3. Работа электрической машины постоянного тока в режиме генератора
- •§ 2.2. Классификация полупроводниковых материалов
- •Варисторы
- •Терморезисторы
- •Тензорезисторы
- •[Править]Основные характеристики и параметры диодов
- •[Править]Классификация диодов [править]Типы диодов по назначению
- •[Править]Типы диодов по частотному диапазону
- •[Править]Типы диодов по размеру перехода
- •[Править]Типы диодов по конструкции
- •Транзисторы
- •1.5.1 Структура транзистора
- •История создания полевых транзисторов
- •Схемы включения полевых транзисторов
- •Классификация полевых транзисторов
- •Области применения полевых транзисторов
- •]Устройство и основные виды тиристоров
- •Режимы работы триодного тиристора Режим обратного запирания
- •Режим прямого запирания
- •Двухтранзисторная модель
- •Режим прямой проводимости
- •Классификация тиристоров[2][3][4]
- •Отличие динистора от тринистора
- •Отличие тиристора триодного от запираемого тиристора
- •Симистор
- •Характеристики тиристоров
- •Оптоэлектронные приборы
- •Оптоэлектронные полупроводниковые приборы
- •3.1 Фоторезисторы
- •3.2 Фотодиод
- •3.3 Светоизлучательные диоды
- •Классификация усилителей на полупроводниковых триодах
- •Операционные усилители
- •Обозначения на схеме
- •Принцип действия
- •Операционный усилитель без отрицательной обратной связи (компаратор)
- •Операционный усилитель с отрицательной обратной связью (неинвертирующий усилитель)
- •Вторичные источники питания
- •Задачи вторичного источника питания
Резонансы в цепях синусоидального тока
Резонансом называется такой режим работы цепи, включающей в себя индуктивные и емкостные элементы, при котором ее входное сопротивление (входная проводимость) вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением.
Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
Для
цепи на рис.1 имеет место Соединение
фаз треугольником Несколько
реже, чем соединение звездой, в трехфазных
устройствах применяют соединение
треугольником
где
|
(1) |
|
(2) |
В
зависимости от соотношения
величин
и
возможны
три различных случая.
1.
В цепи преобладает индуктивность,
т.е.
,
а следовательно,
.
Этому режиму соответствует векторная
диаграмма на рис. 2,а.
2. В
цепи преобладает емкость, т.е.
,
а значит,
.
Этот случай отражает векторная диаграмма
на рис. 2,б.
3.
-
случай резонанса напряжений (рис. 2,в).
Условие резонанса напряжений
|
(3) |
При
этом, как следует из (1) и (2),
.
При резонансе напряжений или режимах, близких к нему, ток в цепи резко возрастает. В теоретическом случае при R=0 его величина стремится к бесконечности. Соответственно возрастанию тока увеличиваются напряжения на индуктивном и емкостном элементах, которые могут во много раз превысить величину напряжения источника питания.
Пусть,
например, в цепи на рис. 1
.
Тогда
,
и, соответственно,
.
Явление резонанса находит полезное применение на практике, в частности в радиотехнике. Однако, если он возникает стихийно, то может привести к аварийным режимам вследствие появления больших перенапряжений и сверхтоков.
Физическая сущность резонанса заключается в периодическом обмене энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, причем сумма энергий полей остается постоянной.
Суть
дела не меняется, если в цепи имеется
несколько индуктивных и емкостных
элементов. Действительно, в этом
случае
,
и соотношение (3) выполняется для
эквивалентных значений LЭ и
CЭ .
Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать
|
(4) |
Резонансными
кривыми называются
зависимости тока и напряжения от частоты.
В качестве их примера на рис. 3 приведены
типовые кривые I(f);
и
для
цепи на рис. 1 при U=const.
Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:
|
(5) |
-
и характеризующая “избирательные”
свойства резонансного контура, в
частности его полосу
пропускания
.
Другим параметром резонансного контура является характеристическое сопротивление, связанное с добротностью соотношением
|
(6) |
или
с учетом (4) и (5) для
можно
записать:
|
(7) |