
- •Топологические параметры цепи
- •Эквивалентные преобразования электрических цепей
- •Метод эквивалентных преобразований
- •Пример применения
- •Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
- •Резонансы в цепях синусоидального тока
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- •Резонанс в сложной цепи
- •20. Емкостной характер цепи синусоидального тока с параллельным соединением rlc — элементов.
- •Комплексный метод расчета цепей синусоидального тока
- •Переменный однофазный ток
- •Мощность
- •Коэффициент мощности
- •Аварийные режимы в нагрузках соединенных звездой
- •Аварийные режимы в нагрузках соединенных треугольником
- •Соединение в звезду. Схема, определения
- •Соединение в треугольник. Схема, определения
- •Соотношение между линейными и фазными токами и напряжениями.
- •Соотношения между фазными и линейными напряжениями источников. Номинальные напряжения
- •Измерение активной мощности в трехфазных цепях
- •Измерение активной мощности двумя ваттметрами
- •4.2. Магнитные цепи
- •Закон полного тока
- •Ток смещения
- •Магнитные цепи
- •9.1. Основные определения
- •9.2. Свойства ферромагнитных материалов
- •9.3. Расчет магнитных цепей
- •Общая характеристика задач и методов расчета магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •Статическая и дифференциальная индуктивности катушки с ферромагнитным сердечником
- •Магнитные характеристики атома
- •Устройство и принцип действия трансформатора
- •2. Механическая характеристика асинхронного двигателя
- •Работа трансформатора в режиме холостого хода
- •Опыт короткого замыкания трансформатора
- •[Править]Типы
- •[Править]Принцип действия
- •[Править]Электродвигатель
- •[Править]Генератор
- •11.2. Принцип действия машины постоянного тока
- •11.3. Работа электрической машины постоянного тока в режиме генератора
- •§ 2.2. Классификация полупроводниковых материалов
- •Варисторы
- •Терморезисторы
- •Тензорезисторы
- •[Править]Основные характеристики и параметры диодов
- •[Править]Классификация диодов [править]Типы диодов по назначению
- •[Править]Типы диодов по частотному диапазону
- •[Править]Типы диодов по размеру перехода
- •[Править]Типы диодов по конструкции
- •Транзисторы
- •1.5.1 Структура транзистора
- •История создания полевых транзисторов
- •Схемы включения полевых транзисторов
- •Классификация полевых транзисторов
- •Области применения полевых транзисторов
- •]Устройство и основные виды тиристоров
- •Режимы работы триодного тиристора Режим обратного запирания
- •Режим прямого запирания
- •Двухтранзисторная модель
- •Режим прямой проводимости
- •Классификация тиристоров[2][3][4]
- •Отличие динистора от тринистора
- •Отличие тиристора триодного от запираемого тиристора
- •Симистор
- •Характеристики тиристоров
- •Оптоэлектронные приборы
- •Оптоэлектронные полупроводниковые приборы
- •3.1 Фоторезисторы
- •3.2 Фотодиод
- •3.3 Светоизлучательные диоды
- •Классификация усилителей на полупроводниковых триодах
- •Операционные усилители
- •Обозначения на схеме
- •Принцип действия
- •Операционный усилитель без отрицательной обратной связи (компаратор)
- •Операционный усилитель с отрицательной обратной связью (неинвертирующий усилитель)
- •Вторичные источники питания
- •Задачи вторичного источника питания
Операционный усилитель без отрицательной обратной связи (компаратор)
Значение коэффициента усиления у микросхем операционных усилителей обычно большое - 100000 и более, следовательно довольно небольшая разница напряжений между входами V+ и V- приведёт к появлению на выходе усилителя напряжения почти равному напряжению питания. Это называется насыщение усилителя. Величина коэффициента усиления AOL имеет технологический разброс, поэтому не стоит использовать один операционный усилитель в качестве дифференциального усилителя, рекомендуется применять схему из трёх усилителей. Без отрицательной обратной связи, и возможно при наличии положительной обратной связи, операционный усилитель будет работать как компаратор. Если инвертирующий вход соединить с общим проводом (нулевым потенциалом) напрямую или через резистор, а напряжение Vin, поданное на неинвертирующий вход будет положительным, то выходное напряжение будет максимально положительным. Если подать на вход отрицательное напряжение Vin, то на выходе напряжение будет максимально отрицательным. Поскольку с выхода на входы обратная связь отсутствует, то такая схема с разомкнутой цепью обратной связи будет работать как компаратор, коэффициент усиления схемы будет равен коэффициенту усиления операционного усилителя AOL.
Операционный усилитель с отрицательной обратной связью (неинвертирующий усилитель)
Для того, что бы работа операционного усилителя была предсказуемой, применяется отрицательная обратная связь, которая устанавливается путём подачи части напряжения с выхода усилителя на его инвертирующий вход. Эта замкнутая цепь обратной связи существенно снижает усиление усилителя. При использовании отрицательной обратной связи общее усиление схемы значительно больше зависит от параметров цепи обратной связи, чем от параметров операционного усилителя. Если цепь обратной связи содержит компоненты с относительно стабильными параметрами, то изменения параметров операционного усилителя существенно не влияют на характеристики схемы. Передаточная характеристика схемы с операционным усилителем определяется математически передаточной функцией. Проектирование схем с заданной передаточной функцией с операционными усилителями относится к области радиоэлектроники. Передаточная функция является важным фактором в большинстве схем, использующих операционные усилители, например, в аналоговых компьютерах. Высокое входное сопротивление входов и низкое выходное сопротивление выхода является так же полезной особенностью операционных усилителей.
Например, если к неинвертирующему усилителю добавить отрицательную обратную связь (см. рисунок справа) с помощью делителя напряжения Rf, Rg, то это приведёт к снижению усиления схемы. Равновесие восстановится тогда, когда напряжение на выходе Vout станет достаточным для того, что бы изменить напряжение на инвертирующем входе до напряжения Vin. Коэффициент усиления всей схемы определяется по формуле 1 + Rf/Rg. Например, если напряжение Vin = 1 вольт, а сопротивления Rf и Rg одинаковые (Rf = Rg), то на выходе Vout будет присутствовать напряжение 2 вольта, величина этого напряжения как раз достаточная для того, что бы на инвертирующий вход V- поступало напряжение 1 вольт. Так как резисторы Rf и Rg образуют цепь обратной связи, подключённой от выхода ко входу, то получается схема с замкнутой петлёй обратной связи. Общий коэффициент усиления схемы Vout / Vin называется коэффициентом усиления с замкнутой петлёй обратной связи ACL. Так как обратная связь отрицательная, то в этом случае ACL < AOL.
Можно рассмотреть это с другой стороны, сделав два предположения: Во-первых, когда операционный усилитель работает в линейном режиме, то разница напряжений между его неинвертирующим (+) и инвертирующим (-) выводами настолько мала, что ею можно пренебречь. Во-вторых, будем считать входные сопротивления обоих входов (+) и (-) очень высокими (несколько мегаом у современных операционных усилителей). Таким образом, когда схема, изображённая на рисунке справа, работает как неинвертирующий линейный усилитель, то напряжение Vin, появившееся на входах (+) и (-), приведёт к появлению тока i, протекающего через резистор Rg, величиной Vin/Rg. Согласно закону Кирхгофа, утверждающего, что сумма токов, втекающих в узел, равна сумме токов, вытекающих из этого узла, и поскольку сопротивление входа (-) почти бесконечно, можно предположить, что почти весь ток i, протекающий через резистор Rf, создаёт напряжение на выходе, равное Vin + i * Rf. Подставляя слагаемые в формулу, можно легко определить усиление схемы этого типа.
i = Vin / Rg
Vout = Vin + i * Rf = Vin + (Vin / Rg * Rf) = Vin + (Vin * Rf) / Rg =Vin * (1+ Rf / Rg)
G = Vout / Vin
G = 1 + Rf / Rg
55 источники вторичного питания аппаратуры.