Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по расчетам электрических цепей.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.32 Mб
Скачать

9.3. Расчет магнитных цепей

     Основным законом, используемым при расчетах магнитных цепей, является закон полного тока.

     (9.1)

     Он формулируется следующим образом: линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, охватываемых этим контуром. Если контур интегрирования охватывает катушку с числом витков W, через которую протекает ток I, то алгебраическая сумма токов  , где F - магнитодвижущая сила.

    Обычно  контур  интегрирования  выбирают таким образом, чтобы он совпадал с  силовой линией магнитного поля, тогда векторное произведение в формуле (9.1) можно заменить произведением скалярных величин H·dl. В практических расчетах интеграл   заменяют суммой   и выбирают отдельные участки магнитной цепи таким образом, чтобы H1, H2, . . . вдоль этих участков можно было считать приблизительно постоянными. При этом (9.1) переходит в

     (9.2)

      где  l1, l2, …, ln - длины участков магнитной цепи;            H1·l1, H2·l2 - магнитные напряжения участков цепи. Магнитным сопротивлением участка магнитной цепи называется отношение магнитного напряжения рассматриваемого участка к магнитному потоку в этом участке

,   

      где  S - площадь поперечного сечения участка магнитной цепи,               l - длина участка.

     Рассмотрим расчет магнитной цепи, изображенной на рис. 9.2.

     Ферромагнитный магнитопровод имеет одинаковую площадь поперечного сечения S.       lср - длина средней силовой линии магнитного поля в магнитопроводе;       δ - толщина воздушного зазора.       На магнитопроводе размещена обмотка, по которой протекает ток I.           Рис. 9.2

      Прямая задача расчета магнитной цепи заключается в том, что задан магнитный поток Ф и требуется определить магнитодвижущую силу F. Определим магнитную индукцию в магнитопроводе

.

     По кривой намагничивания найдем значение напряженности магнитного поля H, соответствующее величине В.         Напряженность магнитного поля в воздушном зазоре

.

      Магнитодвижущая сила обмотки

.

      При обратной задаче расчета магнитной цепи по заданному значению магнитодвижущей силы требуется определить магнитный поток. Расчет такой задачи выполняется с помощью магнитной характеристики цепи F = f(Ф).        Для построения такой характеристики необходимо задаться несколькими значениями Ф и найти соответствующие значения F. С помощью магнитной характеристики по заданной магнитодвижущей силе определяется магнитный поток.

33 задачи анализа и расчета магнитных цепей.

Общая характеристика задач и методов расчета магнитных цепей.

Общая характеристика задач и методов расчета магнитных цепей

Указанная в предыдущей лекции формальная аналогия между электрическими и магнитными цепями позволяет распространить все методы и технику расчета нелинейных резистивных цепей постоянного тока на нелинейные магнитные цепи. При этом для наглядности можно составитьэквивалентную электрическую схему замещения исходной магнитной цепи, с использованием которой выполняется расчет.

Нелинейность магнитных цепей определяется нелинейным характером зависимости   , являющейся аналогом ВАХ    и определяемой характеристикой ферромагнитного материала   . При расчете магнитных цепей при постоянных потоках обычно используют основную кривую намагничивания. Петлеобразный характер зависимости    учитывается при расчете постоянных магнитов и электротехнических устройств на их основе.

При расчете магнитных цепей на практике встречаются две типичные задачи:

-задача определения величины намагничивающей силы (НС), необходимой для создания заданного магнитного потока (заданной магнитной индукции) на каком - либо участке магнитопровода (задача синтеза или “прямая“ задача);

-задача нахождения потоков (магнитных индукций) на отдельных участках цепи по заданным значениям НС (задача анализа или “обратная” задача).

Следует отметить, что задачи второго типа являются обычно более сложными и трудоемкими в решении.

В общем случае в зависимости от типа решаемой задачи (“прямой” или “обратной”) решение может быть осуществлено следующими методами:

-регулярными;

-графическими;

-итерационными.

При этом при использовании каждого из этих методов первоначально необходимо указать на схеме направления НС, если известны направления токов в обмотках, или задаться их положительными направлениями, если их нужно определить. Затем задаются положительными направлениями магнитных потоков, после чего можно переходить к составлению эквивалентной схемы замещения и расчетам.

Магнитные цепи по своей конфигурации могут быть подразделены на неразветвленные и разветвленные. В неразветвленной магнитной цепи на всех ее участках имеет место один и тот же поток, т.е. различные участки цепи соединены между собой последовательно. Разветвленные магнитные цепи содержат два и более контура.