
- •1. Сетевое взаимодействие и общие принципы его организации.
- •2. Сетевая инфраструктура и требования к ней. Методы коммутации.
- •3. Локальные, глобальные и объединенные сети (Internet, Intranet, Extranet).
- •4. Сетевые протоколы. Общие принципы адресации в сетях.
- •5. Многоуровневые модели и их применение в сфере сетевых технологий. Pdu и процесс инкапсуляции.
- •6. Модель стека tcp/ip и эталонная модель osi.
- •7. Функциональность прикладного уровня модели tcp/ip. Приложения, службы и протоколы: определения и взаимосвязь.
- •8. Краткая характеристика протоколов dns, http, smtp/pop, ftp, dhcp.
- •8. Краткая характеристика протоколов dns, http, smtp/pop, ftp, dhcp(продолжение).
- •9. Транспортный уровень: задачи, протоколы, адресация.
- •10. Протокол tcp: установление и разрыв соединения, управление процессом передачи, структура сегмента.
- •11. Протокол udp: назначение, особенности, структура дейтаграммы.
- •13. Общие принципы адресации на сетевом уровне. Выделение сетей.
- •14. Сетевой уровень: маршрутизация, получение информации о маршрутах.
- •15. Адресация iPv4: структура адреса, виды адресов.
- •16. Назначение сетевых адресов.
- •17. Адресация iPv4: выделение подсетей.
- •18. Тестирование сетевого уровня.
- •19. Канальный уровень: назначение, блоки данных, адресация.
- •20. Канальный уровень: методы управления доступом к среде.
- •21. Физический уровень: основные задачи, методы физического и логического кодирования, оценки скорости передачи данных.
- •22. Физический уровень: виды сред передачи данных и их характеристики.
- •23. Общие принципы технологии Ethernet.
- •24. Технология Ethernet: структура кадра, адресация, методы передачи кадров, физический уровень.
- •25. Технология Ethernet: метод доступа к среде передачи данных csma/cd.
- •26. Концентраторы и коммутаторы технологии Ethernet: принципы функционирования и сравнительные характеристики.
- •27. Протокол разрешения адресов arp.
- •28. Кабельная инфраструктура локальных сетей.
- •28. Кабельная инфраструктура локальных сетей(продолжение1.
- •28. Кабельная инфраструктура локальных сетей(продолжение).
- •29. Подключение к глобальным сетям. Интерфейсы сетевых устройств.
- •30. Операционная система Cisco ios: конфигурационные файлы, режимы, способы управления.
- •31. Базовые настройки Cisco ios.
- •32. Тестирование соединений на различных уровнях.
8. Краткая характеристика протоколов dns, http, smtp/pop, ftp, dhcp.
DNS (англ. Domain Name System — система доменных имён) - компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста (компьютера или устройства), получения информации о маршрутизации почты, обслуживающих узлах для протоколов в домене (SRV-запись).
Распределённая база данных DNS поддерживается с помощью иерархии DNS-серверов, взаимодействующих по определённому протоколу.
DNS обладает следующими характеристиками:
Распределённость хранения информации. Каждый узел сети в обязательном порядке должен хранить только те данные, которые входят в его зону ответственности и (возможно) адреса корневых DNS-серверов.
Кеширование информации. Узел может хранить некоторое количество данных не из своей зоны ответственности для уменьшения нагрузки на сеть.
Иерархическая структура, в которой все узлы объединены в дерево, и каждый узел может или самостоятельно определять работу нижестоящих узлов, или делегировать (передавать) их другим узлам.
Резервирование. За хранение и обслуживание своих узлов (зон) отвечают (обычно) несколько серверов, разделённые как физически, так и логически, что обеспечивает сохранность данных и продолжение работы даже в случае сбоя одного из узлов.
DNS важна для работы Интернета, ибо для соединения с узлом необходима информация о его IP-адресе, а для людей проще запоминать буквенные (обычно осмысленные) адреса, чем последовательность цифр IP-адреса. В некоторых случаях это позволяет использовать виртуальные серверы, например, HTTP-серверы, различая их по имени запроса. Первоначально преобразование между доменными и IP-адресами производилось с использованием специального текстового файла HOSTS, который составлялся централизованно и обновлялся на каждой из машин сети вручную. С ростом Сети возникла необходимость в эффективном, автоматизированном механизме, которым и стала DNS.
HTTP (англ. HyperText Transfer Protocol — «протокол передачи гипертекста») — протокол прикладного уровня передачи данных (изначально — в виде гипертекстовых документов). Основой HTTP является технология «клиент-сервер», то есть предполагается существование потребителей (клиентов), которые инициируют соединение и посылают запрос, и поставщиков (серверов), которые ожидают соединения для получения запроса, производят необходимые действия и возвращают обратно сообщение с результатом. HTTP в настоящее время повсеместно используется во Всемирной паутине для получения информации с веб-сайтов.
Основным объектом манипуляции в HTTP является ресурс, на который указывает URI (англ. Uniform Resource Identifier) в запросе клиента. Обычно такими ресурсами являются хранящиеся на сервере файлы, но ими могут быть логические объекты или что-то абстрактное. Особенностью протокола HTTP является возможность указать в запросе и ответе способ представления одного и того же ресурса по различным параметрам: формату, кодировке, языку и т. д. Именно благодаря возможности указания способа кодирования сообщения клиент и сервер могут обмениваться двоичными данными, хотя данный протокол является текстовым.
HTTP — протокол прикладного уровня, аналогичными ему являются FTP и SMTP. Обмен сообщениями идёт по обыкновенной схеме «запрос-ответ». Для идентификации ресурсов HTTP использует глобальные URI. В отличие от многих других протоколов, HTTP не сохраняет своего состояния. Это означает отсутствие сохранения промежуточного состояния между парами «запрос-ответ». Компоненты, использующие HTTP, могут самостоятельно осуществлять сохранение информации о состоянии, связанной с последними запросами и ответами. Браузер, посылающий запросы, может отслеживать задержки ответов. Сервер может хранить IP-адреса и заголовки запросов последних клиентов. Однако сам протокол не осведомлён о предыдущих запросах и ответах, в нём не предусмотрена внутренняя поддержка состояния, к нему не предъявляются такие требования.
Простота Протокол настолько прост в реализации, что позволяет с лёгкостью создавать клиентские приложения.
Расширяемость Возможности протокола легко расширяются благодаря внедрению своих собственных заголовков, сохраняя совместимость с другими клиентами и серверами. Они будут игнорировать неизвестные им заголовки, но при этом можно получить необходимую функциональность при решении специфической задачи.
Распространённость При выборе протокола HTTP для решения конкретных задач немаловажным фактором является его распространённость. Как следствие, это обилие различной документации по протоколу на многих языках мира, включение удобных в использовании средств разработки в популярные IDE, поддержка протокола в качестве клиента многими программами и обширный выбор среди хостинговых компаний с серверами HTTP. Основной недостаток – отсутствие шифрования данных. Проблему решает Secure HTTP (HTTPS)
SMTP/POP
Сервер электронной почты разделяется на 2 процесса – агент передачи почты (доставки почты от клиента к серверу и между серверами) и агент доставки (реагирует на запросы почтового клиента пользователя) почты (MTA и MDA).
SMTP используется для отправки почты от пользователей к серверам и между серверами для дальнейшей пересылки к получателю. Для приёма почты почтовый клиент должен использовать протоколы POP3 или IMAP.
Чтобы доставить сообщение до адресата, необходимо переслать его почтовому серверу домена, в котором находится адресат. Для этого обычно используется запись типа MX (англ. Mail eXchange — обмен почтой) системы DNS. Если MX запись отсутствует, то для тех же целей может быть использована запись типа A. Некоторые современные реализации SMTP-серверов (например, Exim[1]) для определения сервера, обслуживающего почту в домене адресата, также могут задействовать SRV-запись (RFC 2782).
Широкое распространение SMTP получил в начале 1980-х годов. До него использовался протокол UUCP, который требовал от отправителя знания полного маршрута до получателя и явного указания этого маршрута в адресе