
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
Сезонные фиктивные переменные
При построении модели регрессии может возникнуть ситуация, когда в неё необходимо включить не только колич-ные, но и кач-ные переменные (например, возраст, образование, пол, расовую принадлежность и др.).
Фиктивной переменной наз-ся атрибутивный или качественный фактор, представленный с помощью определённого цифрового кода.
Метод сезонных фиктивных переменных относится к методам моделирования сезонных компонент временного ряда. Суть данного метода заключается в построении модели регрессии, которая наряду с фактором времени включает сезонные фиктивные переменные.
Модель регрессии, включающая в качестве факторной (факторных) переменных фиктивную переменную называется моделью регрессии с переменной структурой.
Наиболее наглядным примером применения фиктивных переменных является модель регрессии, отражающая проблему разрыва в заработной плате у мужчин и женщин.
Предположим, что на основе собранных данных была построена модель регрессии, отражающая зависимость заработной платы рабочих y от их возраста х: yt=β0+β1xt. (спецификация)
Однако данная модель регрессии не может в полной мере охарактеризовать вариацию результативной переменной. Поэтому в модель необходимо ввести дополнительный фактор, например пол, на основании предположения о том, что у мужчин в среднем заработная плата выше, чем у женщин. В связи с тем, что переменная пола является качественной, её необходимо представить в виде фиктивной переменной следующим образом:
С учётом новой фиктивной переменной модель регрессии примет вид: y=β0+β1x+β2D, где β2 – это коэффициент, который характеризует в среднем разницу в заработной плате у мужчин и женщин.
Пример 2
Рассмотрим модель регрессии, характеризующую зависимость переменной размера заработной платы у от переменной стажа работников х с различным образованием. Качественная переменная «образование» может принимать три значения: среднее, среднее специальное и высшее. Для включения факторной переменной «образование» в модель регрессии, необходимо ввести две новых фиктивных переменных, потому что их количество должно быть на единицу меньше, чем значений качественной переменной.
Следовательно, качественная переменная «образование» может быть представлена в виде:
Модель регрессии, характеризующая зависимость переменной размера заработной платы у от переменной стажа работников х с различным образованием, примет вид: y=β0+β1x+β2D1+ β3D2.
Принципы спецификации эконометрических моделей и их формы.
Определение явного вида эконометрической модели называется спецификацией эконометрической модели.
При спецификации эконометрических моделей принято учитывать четыре принципа:
1) эконометрические утверждения и закономерности должны быть переведены на математический язык;
2) количество уравнений в модели должно быть равно числу эндогенных переменных;
В результате может получиться одно изолированное уравнение или система нескольких уравнений.
Экзогенные (независимые) переменные – эк-кие переменные объекта, значения которых определяются вне данной модели объекта.
Эндогенные (зависимые) переменные – экономические переменные объекта, значения которых определяются внутри модели в результате одновременного взаимодействия образующих модель соотношений.
3) переменные должны быть датированы; Y t Xt
Yt-1 ,…, Yt-n – прошлое Yt+1 ,…, Yt+n – будущее
4) в модель должен быть включён параметр случайной ошибки, чтобы охарактеризовать влияние случайных факторов.
Сущ-ют след формы спецификации моделей:
1) структурная форма модели, когда эндогенные переменные не выражены явно через предопределенные переменные;
2) приведенная форма модели, когда эндогенные переменные представляют собой явно выраженные функции от предопределенных переменных.
Пример. (хотя можно выкинуть)
Модель Самуэльсона-Хикса. Экон-ким объектом в эк-cкой модели Самуэльсона-Хикса является закрытая экономика.
Состояние закрытой экономики в текущем периоде t характеризуется переменными (Yt, Ct, It, Gt),
где Yt – валовой внутренний продукт (ВВП);
Ct – уровень потребления;
It – величина инвестиций;
Gt – государственные расходы.
При составлении спецификации модели Самуэльса-Хикса необходимо учесть следующие экономические утверждения:
1) текущее потребление объясняется уровнем валового внутреннего продукта в предыдущем периоде, увеличиваясь одновременно с ним, но с меньшей скоростью;
2) величина инвестиций прямо пропорциональна приросту валового внутреннего продукта за предшествующий период (прирост ВВП за предшествующий период определяется как разность Yt-lи Yt-2);
3) государственные расходы возрастают с постоянным темпом роста;
4) текущее значение валового внутреннего продукта представляет собой сумму текущих уровней потребления, инвестиций и государственных расходов (тождество системы национальных счетов).
Если вышеперечисленные экономические утверждения перевести на математический язык, то мы придём к спецификации модели вида (1):
Ct=a0+a1Yt–1,
It=b*(Yt–1–Yt-2),
Gt=g*Gt–1,
Yt=Ct+It+Gt,
при ограничениях:
0<a1<1,< em=""></a1<1,<>
b>0,
g>0.