
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
(*)
Модель (*) – линейная эконометрическая модель в виде изолированных уравнений с несколькими объясняющими переменными или моделями линейной множественной регрессии.
В
этой модели две экзогенные переменные
x1, x2 и одна
эндогенная переменная y.
Спецификация (*) содержит четыре параметра:
Пусть
известны значения экзогенных и эндогенных
переменных модели (*):
при t=1, 2, …, n.
Порядок оценивания модели (*) состоит из следующих шагов.
Шаг
1. В столбце А листа Excel с
первой строчки расположить значения
эндогенной переменной y.
В столбцах B и C,
начиная с первой строчки, записать
значения экзогенных переменных
соответственно
и
.
|
A |
B |
C |
D |
E |
F |
G |
1 |
y1 |
X11 |
X21 |
|
|
|
|
2 |
Y2 |
X12 |
X22 |
|
|
|
|
… |
… |
… |
… |
|
|
|
|
n |
yn |
X1n |
X2n |
|
|
|
|
n+1 |
|
|
|
|
|
|
|
n+2 |
|
|
|
|
|
|
|
n+3 |
|
|
|
|
|
|
|
n+4 |
|
|
|
|
|
|
|
n+5 |
|
|
|
|
|
|
|
Шаг 2. Активировать ячейку с адресом А(n+1) и на стандартной панели инструментов щелкнуть мышью кнопку вставки функций (fx).
Шаг 3. В диалоговом окне «Категория» выбрать «Статистические»; в диалоговом окне «Выберите функцию» - «Линейн»; щелкнуть мышью по кнопке ОК.
Шаг
4. В строчке «Известные_значения_y»
диалогового окна указать (латиницей!)
адрес А1:Аn диапазона
значений эндогенной переменной yt,
а в строчке «Известные_значения_х» -
адрес B1:Cn
диапазона известных значений
предопределенных переменных x1
,x2.
Шаг 5. В строчку «Конст» диалогового окна занести (кириллицей!) слово «истина», либо цифру 1.
Шаг 6. В строчку «Статистика» диалогового окна занести слово «истина» или цифру 1 и щелкнуть мышью по кнопке ОК.
Шаг 7. Выделить мышью диапазон ячеек A(n+1):C(n+5).
Шаг 8. Щелкнуть мышью по строке формул.
Шаг 9. Нажать клавиши Ctrl + Shift + Enter.
В итоге в выделенном диапазоне ячеек появятся результаты оценивания модели (*).
|
A |
B |
C |
D |
E |
F |
G |
1 |
y1 |
X11 |
X21 |
|
|
|
|
2 |
Y2 |
X12 |
X22 |
|
|
|
|
… |
… |
… |
… |
|
|
|
|
n |
Yn |
X1n |
X2n |
|
|
|
|
n+1 |
|
|
|
|
|
|
|
n+2 |
|
|
|
|
|
|
|
n+3 |
|
|
# Н/Д |
|
|
|
|
n+4 |
F |
|
# Н/Д |
|
|
|
|
n+5 |
|
|
# Н/Д |
|
|
|
|
Итак, модель будет выглядеть: