Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekonometrika (2).docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.37 Mб
Скачать
  1. Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.

С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:

• иметь высокую вариабельность;

• быть сильно коррелированными с объясняемой переменной;

• быть слабо коррелированными между собой;

•быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.

Объясняющие переменные подбираются с помощью стат-ких мето­дов. Процедура подбора переменных состоит из следующих этапов:

1. На основе накопленных знаний составляется множество так называе­мых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать X1,X2,…,Xm

2. Собирается статистическая информация о реализациях как объясняе­мой переменной, так и потенциальных объясняющих переменных. Форми­руется вектор у наблюдаемых значений переменной Y и матрица X наблю­даемых значений переменных X1,X2,…,Xm в виде

3. Исключаются потенциальные объясняющие переменные, характеризу­ющиеся слишком низким уровнем вариабельности.

4. Рассчитываются коэффициенты корреляции между всеми рассматри­ваемыми переменными.

5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.

Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, кот не были включены в модель.

Идея метода показателей информационной емкости сводится к выбору таких объясняющих переменных, которые сильно коррелированы с объясня­емой переменной, и одновременно, слабо коррелированы между собой. В ка­честве исходных точек этого метода рассматриваются вектор R0 и матрица R.

Рассматриваются все комбинации потенциальных объясняющих пере­менных, общее количество которых составляет I = 2W-1. Для каждой комбинации потенциальных объясняющих переменных рас­считываются индивидуальные и интегральные показатели информацион­ной емкости.

Индивидуальные показатели информационной емкости в рамках конк­ретной комбинации рассчитываются по формуле

; (l=1,2,…,L; j=1,2,… ), где l – номер переменной, – количество переменных в рассматриваемой комбинации.

Интегральные показатели информационной емкости потенциальных объясняющих переменных рассчитываются по формуле

, (l=1,2,…,L).

Индивидуальные у интегральные показатели информационной емкости нормируются в интервале [0; 1]. Их значения оказываются тем больше чем сильнее объясняющие переменные коррелируют с объясняемой переменной и чем слабее они коррелируют между собой.

В качестве объясняющих выбирается такая комбинация переменных, которой соответствует максимальное значение интегрального показателя и формационной емкости.

  1. Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.

Вторым условием Гаусса – Маркова для классической регрессионной модели является независимость дисперсии возмущения от номера наблюдений (гомо-сть – одинаковый разброс). Нарушение этого условия принято называть гетеро-тью (неодинаковый разброс).

При наличии гетеро-сти количественные характеристики вектора возмущений равны:

  • ,

Где , t=1, …, n – значения дисперсии возмущений.

Причины гетеро-сти:

  • Неоднородность исследуемых объектов (например, при анализе зависимости спроса от дохода потребителя выясняется, что чем больше доход, тем больше индивидуальное значение спроса колеблется относительно ожидаемого значения);

  • Характер наблюдений (например, данные временного ряда).

Последствия гетеро-сти:

При наличии гетеро-сти МНК обеспечивает несмещенные оценки параметров, но оценка дисперсии возмущений – смещенная, т.е. , , и это приводит к неадекватным оценкам:

  • Автоковариационной матрицы оценок параметров:

  • Границ доверительных интервалов параметров модели и значений зависимой переменной, т.е. последствия такие же, как и от автокорреляции.

Тесты на наличие (отсутствие) гетероскедастичности

  • Тест Голдфельда-Квандта;

  • Тест ранговой корреляции Спирмена;

  • Тест Глейзера.

Гомоскедастичность Гетероскедастичность

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]