
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:
• иметь высокую вариабельность;
• быть сильно коррелированными с объясняемой переменной;
• быть слабо коррелированными между собой;
•быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.
Объясняющие переменные подбираются с помощью стат-ких методов. Процедура подбора переменных состоит из следующих этапов:
1. На основе накопленных знаний составляется множество так называемых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать X1,X2,…,Xm
2. Собирается статистическая информация о реализациях как объясняемой переменной, так и потенциальных объясняющих переменных. Формируется вектор у наблюдаемых значений переменной Y и матрица X наблюдаемых значений переменных X1,X2,…,Xm в виде
3. Исключаются потенциальные объясняющие переменные, характеризующиеся слишком низким уровнем вариабельности.
4. Рассчитываются коэффициенты корреляции между всеми рассматриваемыми переменными.
5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.
Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, кот не были включены в модель.
Идея метода показателей информационной емкости сводится к выбору таких объясняющих переменных, которые сильно коррелированы с объясняемой переменной, и одновременно, слабо коррелированы между собой. В качестве исходных точек этого метода рассматриваются вектор R0 и матрица R.
Рассматриваются все комбинации потенциальных объясняющих переменных, общее количество которых составляет I = 2W-1. Для каждой комбинации потенциальных объясняющих переменных рассчитываются индивидуальные и интегральные показатели информационной емкости.
Индивидуальные показатели информационной емкости в рамках конкретной комбинации рассчитываются по формуле
;
(l=1,2,…,L;
j=1,2,…
),
где l
– номер переменной,
– количество переменных в рассматриваемой
комбинации.
Интегральные показатели информационной емкости потенциальных объясняющих переменных рассчитываются по формуле
,
(l=1,2,…,L).
Индивидуальные у интегральные показатели информационной емкости нормируются в интервале [0; 1]. Их значения оказываются тем больше чем сильнее объясняющие переменные коррелируют с объясняемой переменной и чем слабее они коррелируют между собой.
В качестве объясняющих выбирается такая комбинация переменных, которой соответствует максимальное значение интегрального показателя и формационной емкости.
Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
Вторым условием Гаусса – Маркова для классической регрессионной модели является независимость дисперсии возмущения от номера наблюдений (гомо-сть – одинаковый разброс). Нарушение этого условия принято называть гетеро-тью (неодинаковый разброс).
При наличии гетеро-сти количественные характеристики вектора возмущений равны:
,
Где
,
t=1,
…, n
– значения дисперсии возмущений.
Причины гетеро-сти:
Неоднородность исследуемых объектов (например, при анализе зависимости спроса от дохода потребителя выясняется, что чем больше доход, тем больше индивидуальное значение спроса колеблется относительно ожидаемого значения);
Характер наблюдений (например, данные временного ряда).
Последствия гетеро-сти:
При
наличии гетеро-сти МНК обеспечивает
несмещенные оценки параметров, но оценка
дисперсии возмущений – смещенная, т.е.
,
,
и это приводит к неадекватным оценкам:
Автоковариационной матрицы оценок параметров:
Границ доверительных интервалов параметров модели и значений зависимой переменной, т.е. последствия такие же, как и от автокорреляции.
Тесты на наличие (отсутствие) гетероскедастичности
Тест Голдфельда-Квандта;
Тест ранговой корреляции Спирмена;
Тест Глейзера.
Гомоскедастичность Гетероскедастичность