
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:
• иметь высокую вариабельность;
• быть сильно коррелированными с объясняемой переменной;
• быть слабо коррелированными между собой;
• быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.
Объясняющие переменные подбираются с помощью статистических методов. Процедура подбора переменных состоит из следующих этапов:
1.
На основе накопленных знаний составляется
множество так называемых потенциальных
объясняющих переменных (первичных
переменных), в которое включаются все
важнейшие величины, влияющие на
объясняемую переменную. Такие переменные
будем обозначать X1,X2,…,Xm
2. Собирается статистическая информация о реализациях как объясняемой переменной, так и потенциальных объясняющих переменных. Формируется вектор у наблюдаемых значений переменной Y и матрица X наблюдаемых значений переменных X1,X2,…,Xm в виде
3. Исключаются потенциальные объясняющие переменные, характеризующиеся слишком низким уровнем вариабельности.
4. Рассчитываются коэффициенты корреляции между всеми рассматриваемыми переменными.
5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.
Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, которые не были включены в модель.
Предварительным условием присвоения различным величинам статуса объясняющих переменных считается достаточно высокая вариабельность. В качестве меры вариабельности используется коэффициент вариации
,
где
– среднее арифметическое переменной
;
,
Тогда
как
-
стандартное отклонение переменной X.
.
Задается
критическое значение коэффициента
вариации
,
например
Переменные, удовлетворяющие неравенству
признаются квазинеизменными и
исключаются из множества потенциальных
объясняющих переменных. Эти переменные
не несут значимой информации.
Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:
• иметь высокую вариабельность;
• быть сильно коррелированными с объясняемой переменной;
• быть слабо коррелированными между собой;
•быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.
Объясняющие переменные подбираются с помощью статистических методов. Процедура подбора переменных состоит из следующих этапов:
1. На основе накопленных знаний составляется множество так называемых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать X1,X2,…,Xm
2. Собирается статистическая информация о реализациях как объясняемой переменной, так и потенциальных объясняющих переменных. Формируется вектор у наблюдаемых значений переменной Y и матрица X наблюдаемых значений переменных X1,X2,…,Xm в виде
3. Исключаются потенциальные объясняющие переменные, характеризующиеся слишком низким уровнем вариабельности.
4. Рассчитываются коэффициенты корреляции между всеми рассматриваемыми переменными.
5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.
Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, которые не были включены в модель.
Для
оценивания силы линейной зависимости
объясняемой переменной Y
от потенциальных объясняющих переменных
X1,X2,…,Xm
рассчитываются
коэффициенты корреляции:
(i=1,2,…,m).
Эти коэффициенты представляются в виде вектора корреляции:
Коэффициенты корреляции между потенциальными объясняющими переменными X1,X2,…,Xm рассчитываются по формуле
(i, j =
1,2,...,m)
Образуют матрицу корреляции:
Идея этого метода сводится к выбору таких объясняющих переменных, которые сильно коррелируют с объясняемой переменной и, одновременно, слабо коррелируют между собой. В качестве исходных точек рассматриваются вектор R0 и матрица R.
Для заданного уровня значимости у и для (п — 2) степеней свободы рассчитывается так называемое критическое значение коэффициента корреляции:
,
где
— значение распределения Стьюдента
для заданного у и для (п — 2) степеней
свободы.
Критическое значение коэф-та корреляции r* также может априорно задаваться аналитиком.
Процедура подбора объясняющих переменных состоит из следующих этапов:
1. Из множества
потенциальных объясняющих переменных
исключаются все элементы, которые
удовлетворяют неравенству
поскольку они
несущественно коррелируют с объясняемой
переменной.
2. Из оставшихся переменных объясняющей признается такая переменная Xi, для которой \ri\ = max{\ri\}, поскольку Xi является носителем наибольшего количества информации об объясняемой переменной.
3. Из множества
потенциальных объясняющих переменных
исключаются все элементы, которые
удовлетворяют неравенству
поскольку эти переменные слишком
сильно коррелируют с объясняющей
переменной и, следовательно, только
воспроизводят представляемую ею
информацию.
Этапы 1—3 повторяются вплоть до момента опустошения множества потенциальных объясняющих переменных.