
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
Оценивание параметров в ур-ниях тренда.
Параметрические - рассматривают временной ряд как гладкую функцию от t: Xt = f(t),t = 1...n;. При этом сначала выявляют один либо несколько допустимых типов функций f(t); затем различными методами (например, МНК) оценивают параметры этих функций, после чего на основе проверки критериев адекватности выбирают окончательную модель тренда. Важное значение для практических приложений имеют линеаризуемые тренды, то есть тренды, приводимые к линейному виду относительно параметров использованием тех или иных алгебраических преобразований.
Непараметрические - это разные методы сглаживания исходного временного ряда — скользящие средние (простая, взвешенная), экспоненциальное сглаживание. Эти методы применяются как для оценки тренда, так и для прогнозирования. Они полезны в случае, когда для оценки тренда не удается подобрать подходящую функцию.
Пусть
имеются 2 временных рядаа xi
и yi, каждый из которых
содержит трендовую компоненту Т и
случайную компоненту ε. Проведение
аналитического выравнивания о каждому
из этих рядов позволяет найти параметры
соответствующих уравнений трендов и
определить расчетные по тренду уровни
соответственно. Эти расчетные значения
можно принять за оценку трендовой
компоненты Т каждого ряда. Поэтому
влияние тенденции можно устранить путем
вычитания расчетных значений уровней
ряда в модели. Дальнейший анализ
взаимосвязи рядов проводит с использованием
не исходных уровней, а отклонений от
тренда
при
уловии, что последние не содержат
тенденций. Т.е. уравнение регрессии
строится в виде
Оценка адекват-ти полученной эк модeли
Модель именуется адекватной, если прогнозы значений эндогенной переменной согласуются с её наблюденными значениями.
В целом для проверки адекватности модели используются различные тесты, например- Коэффициент детерминации, F-тест, Тест Стьюдента, Ошибка аппроксимации, Тест Дарбина- Уотсона и тест Голфелда-Квандта.
Тест Голфелда-Квандта предназначен для проверки предпосылки теоремы Гаусса-Маркова о гомоскедастичности случайных возмущений в уравнениях наблюдений, т.е. о том, что Var(u1)=Var(u2)=….=Var(un)=σ2
Тест Дарбина- Уотсона. Этот тест предназначен для проверки третьей Cov(ui;uj)=0 при i≠j. Часто истинной причиной неадекватности предпосылки оказывается ошибка в выборе уравнения регрессии в спецификации модели. Данный тест является одним из наиболее важных тестов в эконометрике.
Ошибка аппроксимации. Величина отклонений фактических и расчетных значений результативного признака ( y-ˆyx) по каждому признаку представляет собой ошибку аппроксимации (ОА). Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, находят среднюю ОА как среднюю арифм-кую простую.
или
, где n-число наблюдений
F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется как
гду n — число единиц совокупности; m - число параметров при переменных х
Fтабл – это максимально возможное значение критерия под влия¬нием случайных факторов при данных степенях свободы и уровне значимости а. Уровень значимости а - вероятность отвергнуть пра-вильную гипотезу при условии, что она верна. Обычно а принимает¬ся равной 0,05 или 0,01.
Если Fтабл<Fфакт, то Н0 - гипотеза о случ-ной природе оцениваемых харак-тик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт, то гипотеза Н0 не отклоняется и признается стат-ская незначимость, ненадежность ур-ния регрессии.
Долю
дисперсии, объясняемую регрессией, в
общей дисперсии результативного признака
у характеризует коэффициент (индекс)
детерминации
0≤ R2≤1. причем если R2= 1 то переменная полностью объясняется регрессором xt.
Тест Стьюдента. Отношение коэффициента регрессии к его стандартной ошибке дает t-статистику, которая подчиняется статистике Стьюдента при (n-2) степенях свободы. Эта статистика применяется для проверки статистической значимости коэффициента регерссии и для расчета его доверительного интервала.
Фактическое
значение t-критерия Стьюдента определяется
как