Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekonometrika (2).docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.37 Mб
Скачать
  1. Оценивание параметров в ур-ниях тренда.

Параметрические - рассматривают временной ряд как гладкую функцию от t: Xt = f(t),t = 1...n;. При этом сначала выявляют один либо несколько допустимых типов функций f(t); затем различными методами (например, МНК) оценивают параметры этих функций, после чего на основе проверки критериев адекватности выбирают окончательную модель тренда. Важное значение для практических приложений имеют линеаризуемые тренды, то есть тренды, приводимые к линейному виду относительно параметров использованием тех или иных алгебраических преобразований.

Непараметрические - это разные методы сглаживания исходного временного ряда — скользящие средние (простая, взвешенная), экспоненциальное сглаживание. Эти методы применяются как для оценки тренда, так и для прогнозирования. Они полезны в случае, когда для оценки тренда не удается подобрать подходящую функцию.

Пусть имеются 2 временных рядаа xi и yi, каждый из которых содержит трендовую компоненту Т и случайную компоненту ε. Проведение аналитического выравнивания о каждому из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни соответственно. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда в модели. Дальнейший анализ взаимосвязи рядов проводит с использованием не исходных уровней, а отклонений от тренда при уловии, что последние не содержат тенденций. Т.е. уравнение регрессии строится в виде

  1. Оценка адекват-ти полученной эк модeли

Модель именуется адекватной, если прогнозы значений эндогенной переменной согласуются с её наблюденными значениями.

В целом для проверки адекватности модели используются различные тесты, например- Коэффициент детерминации, F-тест, Тест Стьюдента, Ошибка аппроксимации, Тест Дарбина- Уотсона и тест Голфелда-Квандта.

Тест Голфелда-Квандта предназначен для проверки предпосылки теоремы Гаусса-Маркова о гомоскедастичности случайных возмущений в уравнениях наблюдений, т.е. о том, что Var(u1)=Var(u2)=….=Var(un)=σ2

Тест Дарбина- Уотсона. Этот тест предназначен для проверки третьей Cov(ui;uj)=0 при i≠j. Часто истинной причиной неадекватности предпосылки оказывается ошибка в выборе уравнения регрессии в спецификации модели. Данный тест является одним из наиболее важных тестов в эконометрике.

Ошибка аппроксимации. Величина отклонений фактических и расчетных значений результативного признака ( y-ˆyx) по каждому признаку представляет собой ошибку аппроксимации (ОА). Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, находят среднюю ОА как среднюю арифм-кую простую.

или , где n-число наблюдений

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется как

гду n — число единиц совокупности; m - число параметров при переменных х

Fтабл – это максимально возможное значение критерия под влия¬нием случайных факторов при данных степенях свободы и уровне значимости а. Уровень значимости а - вероятность отвергнуть пра-вильную гипотезу при условии, что она верна. Обычно а принимает¬ся равной 0,05 или 0,01.

Если Fтабл<Fфакт, то Н0 - гипотеза о случ-ной природе оцениваемых харак-тик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт, то гипотеза Н0 не отклоняется и признается стат-ская незначимость, ненадежность ур-ния регрессии.

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации

0≤ R2≤1. причем если R2= 1 то переменная полностью объясняется регрессором xt.

Тест Стьюдента. Отношение коэффициента регрессии к его стандартной ошибке дает t-статистику, которая подчиняется статистике Стьюдента при (n-2) степенях свободы. Эта статистика применяется для проверки статистической значимости коэффициента регерссии и для расчета его доверительного интервала.

Фактическое значение t-критерия Стьюдента определяется как

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]