
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
Модель производственной функции Кобба – Дугласа (нелинейная):
Y
= a0
a0 >0; 0<a1<1
Y – уровень выпуска продукции за принятый отрезок времени;
K и L – уровни соответственно основного капитала и живого труда, использованные в процессе выпуска величины Y.
Данная функция является нелинейной функцией по своим аргументам K и L и по своим коэффициентам a0 и a1.
Нелинейная регрессия (линеаризация, оценка параметров)
Линеаризация модели заключается в том, что с помощью подходящих преобразований исходных переменных исследуемую зависимость представляют в виде линейного соотношения между преобразованными переменными.
Для линеаризации модели в рамках первого подхода могут использоваться как модели, не линейные по переменным, так и не линейные по параметрам.
Если модель нелинейна по переменным, то введением новых переменных ее можно свести к линейной модели, для оценки параметров которой использовать обычный метод наименьших квадратов.
Так, например, если необходимо оценить параметры регрессионной модели
y = β0+ β1*X12 + β2√X2 + ε
то, вводя новые переменные Z1 = X12, Z2=√X2 получим линейную модельy = β0 + β1* Z1 + β2*Z2 + ε параметры которой находятся обычным методом наименьших квадратов.
Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций. Все нелинейные регрессии можно разделить на 2 класса:
1) Регрессии, нелинейные по объясняющим переменным, но линейные по оцениваемым параметрам:
- полиномы разных степеней y=a+b1x+b2x2+b3x3 + ε
-равносторонняя
гипербола y=a+b/x
+ε
2) Регрессии, нелинейные по оцениваемым параметрам:
Степенная y = a*xb*ε
Показательная y = a*bx*ε
Экспоненциальная y = ea+bx
Более сложной проблемой является нелинейность модели по параметрам, так как непосредственное применение метода наименьших квадратов для их оценивания невозможно. К числу таких моделей можно отнести, например, мультипликативную модель.
Оценка параметров нелинейной регрессии по объясняющим переменным (первого класса) проводится также методом наименьших квадратов, так как эти функции линейны по параметрам.
Для любого полинома (многочлена) к-го порядка
y = a + b1x + b2x2+…+bkxk + ε
c помощью замены переменных х1 = х, х2 = х2, хк=хк получим линейную модель множественной регрессии
у = а + b1x1 + b2x2 +… +bkxk + ε
Следовательно, полином любого порядка сводится к линейной регрессии с ее методами оценивания и проверки гипотез.
Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
Переменная величина x с множеством возможных значений Ax называется случайной, если ее возможные значения ti появляются в некотором опыте со случайными элементарными исходами ui вида: ui: x= ti, где ti.
Для описания случайных величин часто используются их числовые характеристики – числа, в сжатой форме выражающие наиболее существенные черты распределения СВ. Наиболее важными из них являются математическое ожидание, дисперсия, среднее квадратическое отклонение и др. Обращаем внимание на то, что в силу определения, числовые характеристики случайных величин являются числами неслучайными, определёнными.
Математическим ожиданием, или средним значением, М(Х) дискретной случайной величины Х называется сумма произведений всех её значений на соответствующие им вероятности:
Свойства мат. ожидания:
1) M(C)=C, где C – постоянная величина;
2) M(kX)=kM(X);
3)M(X±Y)=M(X)±M(Y);
4) M(XY)=M(X)·M(Y), где X,Y – независимые случайные величины;
5) M(X±C)=M(X)±C
6) M(X-a)=0, где a=M(X).
Дисперсией D(X) случайной величины Х называется математическое ожидание квадрата её отклонения от математического ожидания: D(X)=M[X-M(X)]2 или D(X)=M(X-a)2 где a=M(X).
(Для дисперсии СВ Х используется также обозначение Var(X).)
Дисперсия характеризует отклонение (разброс, рассеяние, вариацию) значений СВ относительно среднего значения.
Если СВ Х – дискретная с конечным числом значений, то
.
Дисперсия D(X) имеет размерность квадрата СВ, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величину .
Свойства дисперсии СВ:
1) D(C)=0, где C – постоянная величина;
2) D(kX)=k2D(X);
3) D(X)=M(X2)-a2 где a=M(X);
4)D(X+Y)=D(X-Y)=D(X)+D(Y), где X и Y – независимые случайные величины.
Средним квадратическим отклонением (стандартным отклонением или стандартом) σх случайной величины Х называется арифметическое значение корня квадратного из её дисперсии:
.