
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
Мультиколлинеарность факторов – понятие, проявление и меры устранения.
Мультикол-ть - тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат. Эта связь затрудняет оценивание параметров регрессии в частности, при анализе эконометрической модели.
Чем выше корреляция, тем выше дисперсии и больше риск получить несостоятельные оценки. В этом случае говорят о мульти-ти. Любая регрессия страдает от мульти-ти. Задача определить, когда это влияние становится существенным.
Одним из способов обнаружения мульти-сти является вычисление коэффициентов парной корреляции между факторами. Считается, что если коэффициент корреляции превышает 0,8 (эмпирическое правило), то мульти-сть присутствует.
Меры устранения:
дополнить модель новой информацией, по возможности, не обладающей свойствами коллинеарности (т. е. если речь идет о точках, они не должны находиться на одной прямой, если о векторах — они не должны быть параллельными друг другу, отличаясь только скалярными множителями);
ввести некоторые ограничения на параметры модели;
использовать вероятностные характеристики параметров (напр., опираясь на предшествующие наблюдения за соответствующими величинами).
Методы устранения мультиколлинеарности
1) Метод дополнительных регрессий
Строятся уравнения регрессии, которые связывают каждый из регрессоров со всеми остальными
Вычисляются коэффициенты детерминации
для каждого уравнения регрессии
Проверяется статистическая гипотеза
с помощью F-теста
Вывод: если гипотеза не отвергается, то данный регрессор не приводит к мульти-ости.
2) Метод последовательного присоединения
Строится регрессионная модель с учетом всех предполагаемых регрессоров. По признакам делается вывод о возможном присутствии мульти-сти
Расчитывается матрица корреляций и выбирается регрессор, имеющий наибольшую корреляцию с выходной переменной
К выбранному регрессору последовательно добавляются каждый из оставшихся регрессоров и вычисляются скорректированные коэффициенты детерминации для каждой из моделей. К модели присоединяется тот регрессор, который обеспечивает наибольшее значение скорректированного
3)
Метод предварительного центрирования
- суть метода сводится к тому, что перед
нахождением параметров математической
модели проводится центрирование исходных
данных: из каждого значения в ряде данных
вычитается среднее по ряду:
.
Эта процедура позволяет так развести
гиперплоскости условий МНК, чтобы углы
между ними были перпендикулярны. В
результате этого оценки модели становятся
устойчивыми.
Назначение теста Голдфелда-Квандта, этапы его проведения
Этот тест используется для проверки предпосылки теоремы Гаусса – Маркова о гомо-ти случайного остатка в модели, т.е. для проверки статистической гипотезы о равенстве дисперсий случайных остатков в уравнениях наблюдений: H0: Var(u1)=Var(u2)=…= Var(un)= σ^2
Алгоритм теста:
1) сформировать служебную переменную pi=|x1i|+|x2i|+…+|xki|
2) упорядочить уравнения наблюдений в порядке возрастания переменной pi
3) разбить полученные уравнения примерно на 3 равные части
4) оценить модели по первой и последней частям уравнений наблюдений и вычислить для них ESS (дисперсии)
5) выч-лить статистики GQ=ESS1/ESS2 и GQ^-1
6) найти значение Fкрит (через функцию FРАСПОБР)
7) сравнить полученные статистики с Fкрит. Если GQ<= Fкрит и GQ^-1<=Fкрит, то остаток в модели гомо-чен.