Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан 3 сем шпора.docx
Скачиваний:
11
Добавлен:
01.03.2025
Размер:
622.55 Кб
Скачать
  1. Ду: порядок, частное решение, общее решение, общий интеграл, задача Коши.

Определение 1. Обыкновенным дифференциальным уравнением n – го порядка для функции y аргумента x называется соотношение вида (1.1),

где F – заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальное» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин – «обыкновенное» говорит о том, что искомая функция зависит только от одного действительного аргумента.

Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент x, искомую функцию и любые ее производные, но старшая производная обязана входить в уравнение n-го порядка. Например

а) – уравнение первого порядка;

б) – уравнение третьего порядка.

При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:

в) – уравнение второго порядка;

г) – уравнение первого порядка, образующее после деления на dx эквивалентную форму задания уравнения: .

Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в него оно обращается в тождество.

Найти тем или иным приемом, например, подбором, одну функцию, удовлетворяющую уравнению, не означает решить его. Решить обыкновенное дифференциальное уравнение – значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения n-го порядка, причем число констант совпадает с порядком уравнения: Общее решение может быть, и не разрешено явно относительно y(x): В этом случае решение принято называть общим интегралом уравнения (1.1).

Задавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определенную функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных постоянных, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при (1.2) В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причем, общее число начальных условий равно числу определяемых произвольных констант.

Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.

Обыкновенные дифференциальные уравнения 1-го порядка. Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши.

Дифференциальное уравнение 2-го порядка имеет вид: . (1.1) Общим решением уравнения является семейство функций, зависящее от двух произвольных постоянных и : (или – общий интеграл дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1.1) состоит в отыскании частного решения уравнения, удовлетворяющего начальным условиям: при : , . Необходимо заметить, что графики решений уравнения 2-го порядка могут пересекаться в отличие от графиков решений уравнения 1-го порядка. Однако решение задачи Коши для уравнений 2-го порядка (1.1) при довольно широких предположениях для функций, входящих в уравнение, единственно, т.е. всякие два решения с общим начальным условием , совпадают на пересечении интервалов определения.

2. Теорема существования и единственности решения ДУ 1-го порядка. Если в уравнении функция и ее частная производная непрерывны в некоторой области D плоскости XOY , и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию . Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскости XOY поле направлений касательных к интегральным кривым. Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме .