- •1 Вопрос
- •2 Вопрос
- •3 Вопрос
- •4 Вопрос
- •1. Сложения вероятностей несовместных событий.
- •5Вопрос
- •6 Вопрос
- •7 Вопрос
- •8 Вопрос
- •9 Вопрос
- •10 Вопрос
- •11 Вопрос
- •12 Вопрос
- •Примеры непрерывных случайных величин:
- •Закон распределения дискретной случайной величины
- •13 Вопрос
- •14 Вопрос
- •15 Вопрос
- •16 Вопрос Числовые характеристики случайных величин
- •17 Вопрос
- •18 Вопрос
- •19 Вопрос
- •20 Вопрос
- •21 Вопрос
- •Формула Бернулли
- •22 Вопрос
- •23 Вопрос
3 Вопрос
Иногда
недостаток конечного числа возможных
исходов испытания можно преодолеть,
используя геометрическое определение
вероятности.
Рассмотрим
некоторую замкнутую область G в
пространстве (рис.5.1). Обозначим через
ее
меру. Если область – одномерная
(отрезок), то мерой будет ее длина, если
область двумерная (некоторая плоская
фигура), то ее мера - площадь, если
трехмерная (тело в пространстве), то –
объем. Пусть область D полностью
содержится в области G.
Мера области D -
.
Рассмотрим следующий эксперимент: случайно из области G выбирается точка А. Необходимо определить вероятность попадания точки А в подобласть D.
Роль элементарных событий в данном эксперименте играют точки области G. Все множество точек области Gобразует пространство элементарных событий. Все элементарные события – равновозможны, так как все точки области G равноправны в отношении попадания туда случайной точки A. Но число этих элементарных событий бесконечно. Поэтому в данном случае классическое определение вероятности не применимо.
Согласно геометрическому определению,
вероятность случайного события А равна отношению меры области, благоприятствующей появлению события А, к мере всей области, т.е.
.
4 Вопрос
Во многих задачах сложные события, вероятности которых надо найти, удается выразить в виде комбинации других, более простых событий, причем вероятности последних либо заданы, либо непосредственно подсчитываются. В таком случае для решения задач можно использовать формулы, выражающие вероятности суммы и произведениясобытий через вероятности соответствующих слагаемых и сомножителей.
1. Сложения вероятностей несовместных событий.
Сумма событий.
Суммой двух событий А н В называют событие А+ В, состоящее в появлении события А, или событияВ, или обоих этих событий.
Например, если из орудия произведены два выстрела и А - попадание при первом выстреле, В - попадание при втором выстреле, то А+В - попадание при первом выстреле, или при втором, или в обоих выстрелах.
В частности, если два события А и В - несовместные, то А + В - событие, состоящее в появлении одного из этих событий, безразлично какого.
Суммой нескольких событий называют событие, которое состоит в появлении хотя бы одного из этих событий.
Например, событие А + В+ С состоит из появлении одного из следующих событий: А, В, С, А иВ, А и С, В и С, А и В и С.
Вероятность суммы несовместимых событий
Теорема. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р (A1 + А2 + ... + Ап) = р (A1) + р (А2,} + ... + р (Ап).
Следствие. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Теорема. Сумма вероятностей событий A1 + А2+ ... + Ап образующих полную группу, равна единице: р (A1) + р (А2,} + ... + р (Ап)=1
Вероятность противоположных событий
Противоположными называют два единственно возможных события, образующих полную группу. Если одно из двух противоположных событий обозначено через А, то другое принято обозначать А' или .Ā.
Теорема. Сумма вероятностей противоположных событий равна единице: Р(А) + Р(Ā)=1.
Замечания
1. Если вероятность одного из двух противоположных событий обозначена через р, то вероятность другого события обозначают через q.Тогда 1-p=q
2.При решении задач на отыскание вероятности события А часто выгодно сначала вычислить вероятность события А, а затем найти искомую вероятность по формуле
Р(А)=1- Р(А)
Принцип практической невозможности маловероятных событий
При решении многих практических задач приходится иметь дело с событиями, вероятность которых весьма мала, т. е. близка к нулю. Можно ли считать, что маловероятное событие А в единичном испытании не произойдет? Такого заключения сделать нельзя, так как не исключено, хотя и мало вероятно, что событие А наступит.
Казалось бы, появление или не появление маловероятного события в единичном испытании предсказать невозможно. Однако длительный опыт показывает, что маловероятное событие в единичном испытании в подавляющем большинстве случаев не наступает. На основании этого факта принимают следующий "принцип практической невозможности маловероятных событий": если случайное событие имеет очень малую вероятность, то практически можно считать что в единичном испытании это событие не наступит.
Естественно возникает вопрос: насколько малой должна быть вероятность события, чтобы можно было считать невозможным его появление в одном испытании? На этот вопрос нельзя ответить однозначно. Для задач, различных по существу, ответы разные. Например, если вероятность того, что парашют при прыжке не раскроется, равна 0,01, то было бы недопустимым применять такие парашюты. Если же вероятность того, что поезд дальнего следования прибудет с опозданием, равна 0,01, то можно практически быть уверенным, что поезд прибудет вовремя.
Достаточно малую вероятность, при которой (в данной определенной задаче) событие можно считать практически невозможным, называют уровнем значимости. На практике обычно принимают уровни значимости, заключенные между 0,01 и 0,05. Уровень значимости, равный 0,01, называют однопроцентным; уровень значимости, равный 0,02, называют двухпроцентным, и т. д.
Подчеркнем, что рассмотренный здесь принцип позволяет делать предсказания не только о событиях, имеющих малую вероятность, но и о событиях, вероятность которых близка к единице. Действительно, если событие А имеет вероятность, близкую к нулю, то вероятность противоположного события А близка к единице. С другой стороны, не появление события А означает наступление противоположного события А. Таким образом, из принципа невозможности маловероятных событий вытекает следующее важное для приложений следствие: если случайное событие имеет вероятность, очень близкую к единице, то практически можно считать, что в единичном испытании это событие наступит. Разумеется, и здесь ответ на вопрос о том, какую вероятность считать близкой к единице, зависит от существа задачи.
